PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1095.
Published online 2010 April 17. doi:  10.1107/S1600536810013607
PMCID: PMC2979034

(1R,2R)-N,N′-Bis[1-(2-pyrid­yl)ethyl­idene]cyclo­hexane-1,2-diamine

Abstract

In the title compound, C20H24N4, the cyclo­hexane ring adopts a chair conformation with the two imine groups linked at equatorial positions. The two halves of the mol­ecule are related by a crystallographic twofold rotation axis. The dihedral angle between the pyridine rings is 75.73 (3)°.

Related literature

For the crystal structures of some Schiff bases derived from cyclo­hexane-1,2-diamine, see: Aslantaş et al. (2007 [triangle]); Glidewell et al. (2005 [triangle]); Liu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1095-scheme1.jpg

Experimental

Crystal data

  • C20H24N4
  • M r = 320.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1095-efi1.jpg
  • a = 18.0605 (3) Å
  • b = 8.9371 (1) Å
  • c = 11.1076 (2) Å
  • β = 97.970 (1)°
  • V = 1775.54 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 100 K
  • 0.49 × 0.37 × 0.35 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.965, T max = 0.975
  • 8186 measured reflections
  • 2044 independent reflections
  • 1833 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.121
  • S = 1.06
  • 2044 reflections
  • 110 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013607/pv2274sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013607/pv2274Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

supplementary crystallographic information

Comment

The stucture of the title compound is presented in Fig. 1. The cyclohexane ring adopts a chair conformation with the two imines linked at equatorial positions. The two halves of the molecule are realted by a two-fold rotation. The dihedral angel between the two pyridine rings is 75.73 (3)°. The crystal structure is devoid of any inter- or intra- molecular interactions.

The bond distances and angles in the title molecule are in agreement with the corresponding bond distances and angles reported in some related structures (Aslantaş et al., 2007; Glidewell et al., 2005; Liu et al., 2006).

Experimental

A mixture of 2-acetylpyiridine (0.444 g, 4 mmol) and 1,2-diaminocyclohexane (0.224, 2 mmol) was refluxed in ethanol (50 ml) for 2 hours. The solution was then set aside overnight whereupon the yellow crystals of the title compound were formed.

Refinement

Hydrogen atoms were placed at calculated positions (C—H 0.95-1.00 Å), and were treated as riding on their parent atoms with Uiso(H) set to 1.2-1.5 Ueq(C).

Figures

Fig. 1.
Thermal ellipsoid plot of the title compound at 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code for the unlabeled atoms: -x, y, -z+3/2.

Crystal data

C20H24N4F(000) = 688
Mr = 320.43Dx = 1.199 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4367 reflections
a = 18.0605 (3) Åθ = 2.3–30.3°
b = 8.9371 (1) ŵ = 0.07 mm1
c = 11.1076 (2) ÅT = 100 K
β = 97.970 (1)°Block, pale yellow
V = 1775.54 (5) Å30.49 × 0.37 × 0.35 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2044 independent reflections
Radiation source: fine-focus sealed tube1833 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→22
Tmin = 0.965, Tmax = 0.975k = −11→11
8186 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0714P)2 + 1.0614P] where P = (Fo2 + 2Fc2)/3
2044 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.07952 (5)0.04557 (10)0.74621 (8)0.0160 (2)
N20.19413 (5)0.35854 (10)0.82811 (8)0.0188 (2)
C10.22757 (6)0.47046 (13)0.77554 (10)0.0214 (3)
H10.26350.52940.82520.026*
C20.21265 (6)0.50475 (13)0.65292 (10)0.0212 (3)
H20.23680.58650.61990.025*
C30.16173 (7)0.41697 (13)0.57979 (10)0.0233 (3)
H30.15040.43720.49530.028*
C40.12752 (6)0.29891 (12)0.63160 (10)0.0208 (3)
H40.09290.23620.58310.025*
C50.14487 (6)0.27409 (11)0.75622 (9)0.0154 (2)
C60.10752 (6)0.14970 (11)0.81635 (9)0.0160 (2)
C70.10754 (7)0.16392 (14)0.95159 (10)0.0269 (3)
H7A0.07340.24430.96790.040*
H7B0.15820.18730.99090.040*
H7C0.09100.06940.98380.040*
C80.03861 (5)−0.08031 (11)0.78929 (9)0.0151 (2)
H80.0327−0.06500.87660.018*
C90.08258 (6)−0.22419 (11)0.77538 (9)0.0169 (2)
H9A0.0978−0.22720.69310.020*
H9B0.1285−0.22420.83540.020*
C100.03633 (6)−0.36338 (12)0.79419 (10)0.0188 (3)
H10A0.0656−0.45420.78120.023*
H10B0.0248−0.36530.87870.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0176 (4)0.0139 (4)0.0170 (4)−0.0002 (3)0.0038 (3)0.0006 (3)
N20.0187 (5)0.0183 (5)0.0191 (4)−0.0021 (3)0.0020 (3)−0.0008 (3)
C10.0197 (5)0.0199 (6)0.0239 (5)−0.0045 (4)0.0007 (4)−0.0011 (4)
C20.0208 (5)0.0178 (5)0.0253 (6)−0.0030 (4)0.0040 (4)0.0038 (4)
C30.0283 (6)0.0224 (6)0.0186 (5)−0.0045 (4)0.0011 (4)0.0038 (4)
C40.0244 (6)0.0186 (5)0.0184 (5)−0.0052 (4)0.0002 (4)0.0000 (4)
C50.0154 (5)0.0127 (5)0.0184 (5)0.0017 (4)0.0039 (4)−0.0007 (4)
C60.0155 (5)0.0157 (5)0.0173 (5)0.0013 (4)0.0039 (4)0.0001 (4)
C70.0362 (7)0.0279 (6)0.0176 (5)−0.0114 (5)0.0075 (5)−0.0030 (4)
C80.0179 (5)0.0134 (5)0.0140 (4)−0.0012 (4)0.0027 (4)0.0004 (4)
C90.0176 (5)0.0152 (5)0.0179 (5)0.0008 (4)0.0023 (4)0.0010 (4)
C100.0215 (6)0.0136 (5)0.0211 (5)0.0015 (4)0.0020 (4)0.0019 (4)

Geometric parameters (Å, °)

N1—C61.2726 (14)C6—C71.5075 (15)
N1—C81.4623 (12)C7—H7A0.9800
N2—C51.3422 (14)C7—H7B0.9800
N2—C11.3432 (14)C7—H7C0.9800
C1—C21.3856 (16)C8—C91.5304 (14)
C1—H10.9500C8—C8i1.5392 (19)
C2—C31.3833 (16)C8—H81.0000
C2—H20.9500C9—C101.5288 (14)
C3—C41.3874 (15)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.3940 (15)C10—C10i1.526 (2)
C4—H40.9500C10—H10A0.9900
C5—C61.5039 (14)C10—H10B0.9900
C6—N1—C8122.56 (9)H7A—C7—H7B109.5
C5—N2—C1117.45 (9)C6—C7—H7C109.5
N2—C1—C2123.65 (10)H7A—C7—H7C109.5
N2—C1—H1118.2H7B—C7—H7C109.5
C2—C1—H1118.2N1—C8—C9108.70 (8)
C3—C2—C1118.33 (10)N1—C8—C8i105.88 (7)
C3—C2—H2120.8C9—C8—C8i112.63 (6)
C1—C2—H2120.8N1—C8—H8109.8
C2—C3—C4119.06 (10)C9—C8—H8109.8
C2—C3—H3120.5C8i—C8—H8109.8
C4—C3—H3120.5C10—C9—C8111.64 (8)
C3—C4—C5118.76 (10)C10—C9—H9A109.3
C3—C4—H4120.6C8—C9—H9A109.3
C5—C4—H4120.6C10—C9—H9B109.3
N2—C5—C4122.72 (10)C8—C9—H9B109.3
N2—C5—C6116.91 (9)H9A—C9—H9B108.0
C4—C5—C6120.37 (9)C10i—C10—C9110.46 (7)
N1—C6—C5115.68 (9)C10i—C10—H10A109.6
N1—C6—C7128.08 (10)C9—C10—H10A109.6
C5—C6—C7116.23 (9)C10i—C10—H10B109.6
C6—C7—H7A109.5C9—C10—H10B109.6
C6—C7—H7B109.5H10A—C10—H10B108.1

Symmetry codes: (i) −x, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2274).

References

  • Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644–o645.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst E61, o1699–o1701.
  • Liu, B., Zhang, M.-J., Cui, J. & Zhu, J. (2006). Acta Cryst. E62, o5359–o5360.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography