PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1207.
Published online 2010 April 28. doi:  10.1107/S1600536810012201
PMCID: PMC2979028

Methyl 12-bromo­dehydro­abietate

Abstract

The title compound [systematic name: (1R)-methyl 6-bromo-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phen­anthrene-1-carboxyl­ate], C21H29BrO2, was synthesized from N-bromo­succinimide and methyl dehydro­abietate, which was prepared through an esterification reaction using dehydro­abietic acid and methanol as raw materials. The three six-membered rings adopt planar (mean deviation = 0.002 Å) half-chair and chair conformations. The two cyclo­hexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by weak inter­molecular C—H(...)O contacts along the b axis.

Related literature

For the isolation of dehydro­abietic acid, see: Halbrook & Lawrence (1966 [triangle]). For the preparation and use of dehydro­abietic acid derivatives, see: Fonseca et al. (2001 [triangle]); Pan et al. (2006 [triangle]). For the synthesis of the title compound, see: Esteves et al. (1999 [triangle]). For related structures, see: Zhang et al. (2006 [triangle]); Rao et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1207-scheme1.jpg

Experimental

Crystal data

  • C21H29BrO2
  • M r = 393.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1207-efi1.jpg
  • a = 13.888 (3) Å
  • b = 6.1260 (12) Å
  • c = 23.382 (5) Å
  • β = 103.19 (3)°
  • V = 1936.8 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.13 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.567, T max = 0.675
  • 3657 measured reflections
  • 3505 independent reflections
  • 2754 reflections with I > 2σ(I)
  • R int = 0.035
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.128
  • S = 1.01
  • 3505 reflections
  • 218 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.40 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1563 Friedel pairs
  • Flack parameter: 0.010 (15)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012201/zq2035sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012201/zq2035Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Forestry Commonwealth Industry Special Foundation of China (No. 200704008).

supplementary crystallographic information

Comment

Dehydroabietic acid is a readily obtainable compound, which is isolated from disproportionated rosin by methods of aminaion (Halbrook & Lawrence, 1966). A number of new derivatives of dehydroabietic acid have been prepared (Fonseca et al., 2001). The title compound is one of modified products of dehydroabietic acid, which could be used in synthesis of many fluorescence derivatization reagents (Pan et al., 2006). Although, it has been first prepared by Esteves et al.(1999), the crystal structure of the title compound methyl 12-bromo-dehydroabietate was not yet reported. In this work, we present its crystal structure, the molecular structure is shown in Fig. 1. There are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by weak intermolecular O—H···O contacts and π-π stacking interactions (centroid–centroid distance = 6.126 Å) along the b axis (Fig. 2).

Experimental

p-Toluene sulfochloride (4.6 g), potassium carbonate (3.4 g) and methanol anhydrous (20 ml) were mixed and stirred at room temperature for 2 h, then dehydroabietic acid (6.0 g) was added into the mixture to react for 3 h. The mixture was filtered and extracted by ethyl ether and recrystallized by methanol, methyl dehydroabietate (5.3 g) was prepared. Subsequently, methyl dehydroabietate (1.0 g), N-bromosuccinimide (1.0 g) and acetonitrile (100 ml) were mixed and stirred for 24 h at room temperature, the precipitate was filtered and recrystallized from methanol. Suitable crystals of the title compound for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement

All H atoms bonded to the C atoms were placed geometrically at bond distances of 0.93-0.98 Å and included in the refinement in a riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.
A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.
Fig. 2.
A view of the packing of the title compound along (010).

Crystal data

C21H29BrO2F(000) = 824
Mr = 393.35Dx = 1.349 Mg m3
Monoclinic, C2Melting point: 416 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 13.888 (3) ÅCell parameters from 25 reflections
b = 6.1260 (12) Åθ = 10–13°
c = 23.382 (5) ŵ = 2.13 mm1
β = 103.19 (3)°T = 293 K
V = 1936.8 (7) Å3Rod, colorless
Z = 40.30 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer2754 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
graphiteθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 0→16
Absorption correction: ψ scan (North et al., 1968)k = −7→7
Tmin = 0.567, Tmax = 0.675l = −28→27
3657 measured reflections3 standard reflections every 200 reflections
3505 independent reflections intensity decay: 1%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047w = 1/[σ2(Fo2) + (0.083P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.64 e Å3
3505 reflectionsΔρmin = −0.40 e Å3
218 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0175 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1563 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.010 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.52734 (4)0.20204 (10)0.41747 (2)0.0569 (3)
C10.4547 (4)−0.1955 (9)0.2063 (2)0.0396 (12)
H1A0.4131−0.21110.23420.048*
H1B0.4601−0.04090.19850.048*
O10.6426 (4)−0.1241 (7)0.0769 (2)0.0621 (13)
O20.6696 (4)−0.4626 (8)0.0554 (2)0.0841 (17)
C20.4054 (3)−0.3087 (14)0.1497 (2)0.0478 (12)
H2A0.3425−0.23850.13340.057*
H2B0.3922−0.45940.15810.057*
C30.4686 (3)−0.3032 (13)0.10451 (19)0.0448 (11)
H3A0.4744−0.15320.09240.054*
H3B0.4354−0.38510.07010.054*
C40.5724 (4)−0.3975 (9)0.1272 (2)0.0387 (12)
C50.6204 (3)−0.2861 (11)0.18667 (18)0.0324 (9)
H5A0.6258−0.13180.17680.039*
C60.7266 (4)−0.3588 (9)0.2118 (2)0.0423 (14)
H6A0.7269−0.49960.23090.051*
H6B0.7614−0.37320.18050.051*
C70.7773 (4)−0.1913 (11)0.2557 (3)0.0502 (15)
H7A0.7984−0.07090.23460.060*
H7B0.8361−0.25680.28010.060*
C80.7139 (3)−0.1013 (9)0.2953 (2)0.0361 (11)
C90.6128 (3)−0.1423 (8)0.2847 (2)0.0320 (11)
C100.5593 (3)−0.2863 (11)0.23428 (18)0.0319 (9)
C110.5608 (4)−0.0505 (9)0.3232 (2)0.0357 (11)
H11A0.4930−0.07380.31700.043*
C120.6087 (4)0.0746 (8)0.3703 (2)0.0339 (11)
C130.7099 (3)0.1180 (8)0.3821 (2)0.0347 (11)
C140.7593 (4)0.0265 (9)0.3430 (2)0.0406 (12)
H14A0.82690.05170.34900.049*
C150.7620 (4)0.2626 (9)0.4324 (2)0.0419 (14)
H15A0.72390.25760.46290.050*
C160.8676 (4)0.1866 (15)0.4603 (3)0.0641 (15)
H16A0.86620.03790.47300.096*
H16B0.89520.27740.49340.096*
H16C0.90760.19690.43180.096*
C170.7635 (5)0.5004 (10)0.4120 (3)0.0601 (17)
H17A0.69730.54690.39460.090*
H17B0.80330.51130.38340.090*
H17C0.79090.59180.44500.090*
C180.6337 (4)−0.3401 (9)0.0833 (2)0.0398 (14)
C190.5695 (5)−0.6506 (9)0.1291 (3)0.0527 (16)
H19A0.5388−0.70560.09080.079*
H19B0.5321−0.69660.15680.079*
H19C0.6357−0.70630.14080.079*
C200.5494 (4)−0.5132 (8)0.2616 (2)0.0421 (13)
H20A0.6140−0.56930.27890.063*
H20B0.5160−0.61130.23160.063*
H20C0.5121−0.49950.29130.063*
C210.6987 (5)−0.0491 (12)0.0371 (3)0.0620 (18)
H21A0.69920.10760.03680.093*
H21B0.6697−0.1020−0.00160.093*
H21C0.7653−0.10210.04920.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0488 (3)0.0726 (4)0.0544 (3)−0.0030 (4)0.0226 (2)−0.0201 (4)
C10.033 (3)0.045 (3)0.040 (3)0.000 (2)0.008 (2)−0.005 (2)
O10.100 (4)0.038 (2)0.066 (3)−0.015 (2)0.057 (3)−0.002 (2)
O20.135 (5)0.052 (3)0.093 (4)0.006 (3)0.082 (4)−0.007 (3)
C20.042 (3)0.052 (3)0.048 (3)−0.001 (4)0.006 (2)−0.007 (4)
C30.050 (3)0.048 (3)0.035 (2)−0.004 (4)0.006 (2)−0.002 (4)
C40.046 (3)0.028 (2)0.044 (3)−0.005 (2)0.015 (2)−0.005 (2)
C50.038 (2)0.023 (2)0.038 (2)−0.003 (3)0.0137 (18)0.000 (3)
C60.038 (3)0.044 (4)0.049 (3)0.006 (2)0.018 (2)−0.001 (2)
C70.029 (3)0.075 (4)0.052 (3)0.003 (3)0.018 (3)−0.005 (3)
C80.033 (3)0.041 (3)0.034 (3)0.000 (2)0.008 (2)0.003 (2)
C90.028 (3)0.029 (3)0.038 (3)0.004 (2)0.005 (2)0.006 (2)
C100.030 (2)0.026 (2)0.041 (2)−0.002 (3)0.0099 (17)−0.002 (3)
C110.030 (3)0.039 (3)0.040 (3)−0.003 (2)0.013 (2)0.000 (2)
C120.039 (3)0.031 (3)0.034 (3)0.005 (2)0.013 (2)0.004 (2)
C130.036 (3)0.034 (3)0.031 (3)−0.004 (2)0.001 (2)0.006 (2)
C140.027 (2)0.049 (3)0.045 (3)−0.006 (2)0.008 (2)0.001 (3)
C150.043 (3)0.046 (4)0.035 (3)−0.004 (2)0.005 (2)−0.001 (2)
C160.058 (3)0.060 (4)0.063 (3)−0.006 (4)−0.008 (3)−0.006 (4)
C170.067 (4)0.044 (4)0.062 (4)−0.008 (3)−0.002 (3)−0.003 (3)
C180.051 (3)0.034 (4)0.039 (3)−0.004 (3)0.019 (2)−0.008 (3)
C190.075 (4)0.028 (3)0.061 (4)−0.011 (3)0.029 (3)−0.010 (3)
C200.053 (3)0.031 (3)0.043 (3)−0.005 (2)0.013 (3)0.004 (2)
C210.090 (5)0.052 (4)0.052 (4)−0.026 (4)0.034 (4)−0.010 (3)

Geometric parameters (Å, °)

Br—C121.916 (5)C9—C111.393 (7)
C1—C21.512 (8)C9—C101.524 (7)
C1—C101.553 (7)C10—C201.549 (8)
C1—H1A0.9700C11—C121.382 (7)
C1—H1B0.9700C11—H11A0.9300
O1—C181.340 (8)C12—C131.396 (7)
O1—C211.420 (7)C13—C141.381 (7)
O2—C181.178 (7)C13—C151.517 (7)
C2—C31.520 (6)C14—H14A0.9300
C2—H2A0.9700C15—C171.535 (8)
C2—H2B0.9700C15—C161.535 (8)
C3—C41.532 (7)C15—H15A0.9800
C3—H3A0.9700C16—H16A0.9600
C3—H3B0.9700C16—H16B0.9600
C4—C181.517 (7)C16—H16C0.9600
C4—C191.552 (8)C17—H17A0.9600
C4—C51.555 (7)C17—H17B0.9600
C5—C61.524 (6)C17—H17C0.9600
C5—C101.547 (5)C19—H19A0.9600
C5—H5A0.9800C19—H19B0.9600
C6—C71.507 (8)C19—H19C0.9600
C6—H6A0.9700C20—H20A0.9600
C6—H6B0.9700C20—H20B0.9600
C7—C81.519 (7)C20—H20C0.9600
C7—H7A0.9700C21—H21A0.9600
C7—H7B0.9700C21—H21B0.9600
C8—C141.391 (7)C21—H21C0.9600
C8—C91.391 (7)
C2—C1—C10113.4 (4)C20—C10—C1109.5 (4)
C2—C1—H1A108.9C5—C10—C1108.1 (4)
C10—C1—H1A108.9C12—C11—C9120.8 (4)
C2—C1—H1B108.9C12—C11—H11A119.6
C10—C1—H1B108.9C9—C11—H11A119.6
H1A—C1—H1B107.7C11—C12—C13122.9 (4)
C18—O1—C21118.1 (5)C11—C12—Br116.5 (4)
C1—C2—C3112.3 (5)C13—C12—Br120.5 (4)
C1—C2—H2A109.1C14—C13—C12114.9 (5)
C3—C2—H2A109.1C14—C13—C15122.0 (4)
C1—C2—H2B109.1C12—C13—C15123.1 (5)
C3—C2—H2B109.1C13—C14—C8123.8 (4)
H2A—C2—H2B107.9C13—C14—H14A118.1
C2—C3—C4113.4 (4)C8—C14—H14A118.1
C2—C3—H3A108.9C13—C15—C17110.5 (4)
C4—C3—H3A108.9C13—C15—C16113.1 (5)
C2—C3—H3B108.9C17—C15—C16109.9 (5)
C4—C3—H3B108.9C13—C15—H15A107.7
H3A—C3—H3B107.7C17—C15—H15A107.7
C18—C4—C3107.9 (4)C16—C15—H15A107.7
C18—C4—C19105.9 (4)C15—C16—H16A109.5
C3—C4—C19111.0 (5)C15—C16—H16B109.5
C18—C4—C5108.1 (4)H16A—C16—H16B109.5
C3—C4—C5108.8 (4)C15—C16—H16C109.5
C19—C4—C5115.0 (5)H16A—C16—H16C109.5
C6—C5—C10111.3 (4)H16B—C16—H16C109.5
C6—C5—C4113.4 (4)C15—C17—H17A109.5
C10—C5—C4116.7 (4)C15—C17—H17B109.5
C6—C5—H5A104.7H17A—C17—H17B109.5
C10—C5—H5A104.7C15—C17—H17C109.5
C4—C5—H5A104.7H17A—C17—H17C109.5
C7—C6—C5109.0 (4)H17B—C17—H17C109.5
C7—C6—H6A109.9O2—C18—O1120.4 (5)
C5—C6—H6A109.9O2—C18—C4126.9 (5)
C7—C6—H6B109.9O1—C18—C4112.6 (4)
C5—C6—H6B109.9C4—C19—H19A109.5
H6A—C6—H6B108.3C4—C19—H19B109.5
C6—C7—C8114.6 (4)H19A—C19—H19B109.5
C6—C7—H7A108.6C4—C19—H19C109.5
C8—C7—H7A108.6H19A—C19—H19C109.5
C6—C7—H7B108.6H19B—C19—H19C109.5
C8—C7—H7B108.6C10—C20—H20A109.5
H7A—C7—H7B107.6C10—C20—H20B109.5
C14—C8—C9119.9 (5)H20A—C20—H20B109.5
C14—C8—C7118.2 (4)C10—C20—H20C109.5
C9—C8—C7121.8 (5)H20A—C20—H20C109.5
C8—C9—C11117.6 (5)H20B—C20—H20C109.5
C8—C9—C10122.4 (4)O1—C21—H21A109.5
C11—C9—C10120.0 (4)O1—C21—H21B109.5
C9—C10—C20105.9 (4)H21A—C21—H21B109.5
C9—C10—C5107.8 (4)O1—C21—H21C109.5
C20—C10—C5114.4 (5)H21A—C21—H21C109.5
C9—C10—C1111.3 (5)H21B—C21—H21C109.5
C10—C1—C2—C3−55.4 (8)C6—C5—C10—C1176.2 (5)
C1—C2—C3—C455.2 (9)C4—C5—C10—C1−51.6 (7)
C2—C3—C4—C18−168.5 (6)C2—C1—C10—C9170.0 (5)
C2—C3—C4—C1976.0 (7)C2—C1—C10—C20−73.3 (6)
C2—C3—C4—C5−51.4 (7)C2—C1—C10—C551.8 (7)
C18—C4—C5—C6−60.0 (6)C8—C9—C11—C12−0.6 (7)
C3—C4—C5—C6−176.8 (5)C10—C9—C11—C12177.9 (5)
C19—C4—C5—C658.0 (6)C9—C11—C12—C130.4 (8)
C18—C4—C5—C10168.7 (5)C9—C11—C12—Br177.2 (4)
C3—C4—C5—C1051.8 (6)C11—C12—C13—C140.1 (7)
C19—C4—C5—C10−73.3 (6)Br—C12—C13—C14−176.5 (4)
C10—C5—C6—C7−65.9 (6)C11—C12—C13—C15177.5 (5)
C4—C5—C6—C7160.2 (5)Br—C12—C13—C150.9 (7)
C5—C6—C7—C840.9 (7)C12—C13—C14—C8−0.5 (8)
C6—C7—C8—C14169.8 (5)C15—C13—C14—C8−177.9 (5)
C6—C7—C8—C9−10.7 (8)C9—C8—C14—C130.3 (8)
C14—C8—C9—C110.2 (7)C7—C8—C14—C13179.8 (5)
C7—C8—C9—C11−179.3 (5)C14—C13—C15—C1786.4 (6)
C14—C8—C9—C10−178.2 (5)C12—C13—C15—C17−90.9 (6)
C7—C8—C9—C102.3 (8)C14—C13—C15—C16−37.3 (7)
C8—C9—C10—C2098.6 (5)C12—C13—C15—C16145.4 (5)
C11—C9—C10—C20−79.7 (6)C21—O1—C18—O2−1.8 (10)
C8—C9—C10—C5−24.1 (7)C21—O1—C18—C4179.7 (5)
C11—C9—C10—C5157.5 (5)C3—C4—C18—O2−117.3 (7)
C8—C9—C10—C1−142.5 (5)C19—C4—C18—O21.6 (9)
C11—C9—C10—C139.1 (6)C5—C4—C18—O2125.3 (7)
C6—C5—C10—C955.8 (6)C3—C4—C18—O161.1 (6)
C4—C5—C10—C9−172.0 (5)C19—C4—C18—O1179.9 (5)
C6—C5—C10—C20−61.7 (6)C5—C4—C18—O1−56.4 (6)
C4—C5—C10—C2070.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.962.723.652 (10)165

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2035).

References

  • Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  • Esteves, M. A., Narender, N., Gigante, B., Marcelo-Curto, M. J. & Alvarez, A. (1999). Synth. Commun.29, 275–280.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fonseca, T., Gigante, B. & Gilchrist, T. L. (2001). Tetrahedron, 57, 1793–1799.
  • Halbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem.31, 4246–4247.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Pan, Y.-M., Zhang, Y., Wang, H.-S. & Li, F. (2006). Chin. J. Org. Chem.26, 314–317.
  • Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Y., Pan, Y.-M., Wang, H.-S., Wu, Q. & Zhang, Y. (2006). Acta Cryst. E62, o5425–o5426.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography