PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1079.
Published online 2010 April 14. doi:  10.1107/S1600536810012778
PMCID: PMC2979025

8-Bromo-3,4-dihydro-2H-1,3-thia­zino[2,3:2′,1′]imidazo[5′,4′-b]pyridine

Abstract

The imidazopyridine ring system in the title compound, C9H8BrN3S, is almost planar [r.m.s. deviation of the C and N atoms = 0.007 (1) Å]. The S and methyl­ene C atoms connected to the five-membered ring lie within this plane. The remaining two methyl­ene groups of the thia­zine ring are disordered over two sets of sites in a 0.817 (5):0.183 (5) ratio.

Related literature

The parent triclyclic condensed imidazole (without bromine) has been patented as a pharmaceutical; see: Hideg et al. (1975 [triangle], 1976 [triangle]). For other compounds synthesized from 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione, see: Liszkiewicz et al. (2007 [triangle]); Prasad et al. (1986 [triangle]); Yutilov & Svertilova (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1079-scheme1.jpg

Experimental

Crystal data

  • C9H8BrN3S
  • M r = 270.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1079-efi1.jpg
  • a = 20.2738 (3) Å
  • b = 13.2786 (2) Å
  • c = 7.3169 (1) Å
  • β = 102.193 (1)°
  • V = 1925.33 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.45 mm−1
  • T = 100 K
  • 0.46 × 0.14 × 0.12 mm

Data collection

  • Bruker X8 APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.234, T max = 0.618
  • 30460 measured reflections
  • 3561 independent reflections
  • 3003 reflections with I > 2σ(I)
  • R int = 0.039
  • Standard reflections: 0

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.064
  • S = 0.99
  • 3561 reflections
  • 146 parameters
  • 14 restraints
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012778/bt5242sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012778/bt5242Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University Sidi Mohammed Ben Abdallah, the Université Mohammed V-Agdal and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Commerically-available 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione has been used to react with a range of organic compounds to furnish chemicals having useful biological activities (Liszkiewicz et al., 2007; Prasad et al., 1986; Yutilov & Svertilova, 1988). The compound reacts with 1-chloropropanal under catalytic conditions to yield the title triclyclic condensed imidazole (Scheme I, Fig. 1). The imidazopyridine fused ring is planar. One ethylene fragment of the six-membered ring is twisted such that one atom lies above and the other below the plane. This fragment is disordered over two positions.

Experimental

6-Bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione (1 mmol), potassium carbonate (4 mmol), tetra-n-butylammonium bromide (0.1 mmol) and 1-chloro-propanol (1.5 mmol) in DMF (15 ml) were stirred for 72 h. After completion of reaction (as monitored by TLC), the salt was filtered and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel using chloroform/hexane (1/1) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate.

Refinement

H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The two methylene atoms next to the S atom are disordered over two sites; the disorder refined to an 0.817 (5):0.183 (5) ratio. The pair of S—C distances were restrained to be equal within 0.01 Å of each other, as were the pair of C—C distances. The anisotropic temperature factors of the primed atoms were restrained to be nearly isotropic.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of C9H8BrN3O at the 70% probability level; H atoms are drawn as spheres of an arbitrary radius. The disorder is not shown.

Crystal data

C9H8BrN3SF(000) = 1072
Mr = 270.15Dx = 1.864 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9070 reflections
a = 20.2738 (3) Åθ = 2.8–32.5°
b = 13.2786 (2) ŵ = 4.45 mm1
c = 7.3169 (1) ÅT = 100 K
β = 102.193 (1)°Block, colourless
V = 1925.33 (5) Å30.46 × 0.14 × 0.12 mm
Z = 8

Data collection

Bruker X8 APEXII diffractometer3561 independent reflections
Radiation source: fine-focus sealed tube3003 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 32.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −30→30
Tmin = 0.234, Tmax = 0.618k = −20→20
30460 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0351P)2 + 1.6536P] where P = (Fo2 + 2Fc2)/3
3561 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.49 e Å3
14 restraintsΔρmin = −0.55 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.446434 (7)0.655625 (11)0.45346 (2)0.02338 (5)
S10.082325 (17)0.50817 (3)0.60465 (5)0.01612 (7)
N10.20317 (6)0.43515 (8)0.54957 (17)0.0139 (2)
N20.19469 (6)0.60483 (9)0.56459 (18)0.0162 (2)
N30.31734 (6)0.42166 (9)0.50005 (18)0.0167 (2)
C10.07654 (9)0.37320 (13)0.6425 (4)0.0175 (4)0.817 (5)
H1A0.09930.35680.77260.021*0.817 (5)
H1B0.02850.35370.62560.021*0.817 (5)
C20.10897 (9)0.31333 (13)0.5076 (3)0.0178 (4)0.817 (5)
H2A0.08880.33420.37800.021*0.817 (5)
H2B0.09910.24090.51960.021*0.817 (5)
C1'0.0642 (4)0.3746 (5)0.5409 (16)0.0186 (18)0.183 (5)
H1'A0.02330.35270.58360.022*0.183 (5)
H1'B0.05560.36700.40330.022*0.183 (5)
C2'0.1237 (3)0.3089 (6)0.6309 (11)0.0158 (18)0.183 (5)
H2'A0.11060.23710.61480.019*0.183 (5)
H2'B0.13600.32320.76670.019*0.183 (5)
C30.18508 (7)0.32823 (10)0.5435 (2)0.0179 (3)
H3A0.20620.29620.66390.021*0.817 (5)
H3B0.20300.29470.44330.021*0.817 (5)
H3C0.22400.28870.61180.021*0.183 (5)
H3D0.17480.30510.41190.021*0.183 (5)
C40.16459 (7)0.51691 (10)0.57248 (19)0.0142 (2)
C50.26416 (7)0.47390 (10)0.52582 (19)0.0140 (2)
C60.25763 (7)0.57918 (10)0.53377 (19)0.0143 (2)
C70.31223 (7)0.63821 (10)0.5118 (2)0.0166 (2)
H70.31110.70970.51430.020*
C80.36844 (7)0.58455 (10)0.4857 (2)0.0158 (2)
C90.37001 (7)0.47932 (11)0.4812 (2)0.0175 (3)
H90.41010.44710.46410.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01399 (7)0.02031 (8)0.03740 (10)−0.00406 (5)0.00897 (6)0.00137 (6)
S10.01303 (14)0.01364 (14)0.02374 (16)0.00071 (11)0.00854 (12)−0.00036 (12)
N10.0120 (5)0.0103 (4)0.0206 (5)−0.0002 (4)0.0058 (4)−0.0006 (4)
N20.0136 (5)0.0117 (5)0.0246 (6)0.0011 (4)0.0068 (4)0.0003 (4)
N30.0131 (5)0.0136 (5)0.0244 (6)0.0008 (4)0.0065 (4)−0.0004 (4)
C10.0156 (8)0.0145 (7)0.0240 (11)−0.0020 (6)0.0079 (7)0.0010 (7)
C20.0155 (7)0.0133 (7)0.0255 (11)−0.0024 (6)0.0066 (7)−0.0022 (6)
C1'0.020 (4)0.015 (3)0.023 (5)−0.005 (3)0.009 (3)−0.001 (3)
C2'0.016 (3)0.013 (3)0.020 (4)−0.001 (2)0.005 (3)0.002 (3)
C30.0153 (6)0.0099 (5)0.0301 (7)−0.0009 (4)0.0088 (5)−0.0011 (5)
C40.0128 (5)0.0125 (5)0.0183 (6)0.0014 (4)0.0054 (4)−0.0002 (5)
C50.0123 (5)0.0122 (5)0.0179 (6)−0.0001 (4)0.0043 (4)−0.0003 (4)
C60.0132 (5)0.0114 (5)0.0187 (6)0.0005 (4)0.0041 (5)0.0006 (4)
C70.0144 (6)0.0128 (5)0.0230 (6)−0.0008 (4)0.0047 (5)0.0008 (5)
C80.0119 (5)0.0153 (6)0.0208 (6)−0.0022 (4)0.0046 (5)0.0011 (5)
C90.0128 (6)0.0160 (6)0.0250 (7)0.0010 (5)0.0067 (5)0.0002 (5)

Geometric parameters (Å, °)

Br1—C81.8986 (13)C1'—C2'1.521 (13)
S1—C41.7367 (14)C1'—H1'A0.9900
S1—C11.8211 (18)C1'—H1'B0.9900
S1—C1'1.851 (6)C2'—C31.536 (6)
N1—C41.3689 (17)C2'—H2'A0.9900
N1—C51.3836 (17)C2'—H2'B0.9900
N1—C31.4647 (17)C3—H3A0.9900
N2—C41.3243 (17)C3—H3B0.9900
N2—C61.3844 (17)C3—H3C0.9900
N3—C51.3286 (17)C3—H3D0.9900
N3—C91.3445 (18)C5—C61.4067 (18)
C1—C21.521 (3)C6—C71.3931 (19)
C1—H1A0.9900C7—C81.391 (2)
C1—H1B0.9900C7—H70.9500
C2—C31.522 (2)C8—C91.3982 (19)
C2—H2A0.9900C9—H90.9500
C2—H2B0.9900
C4—S1—C1100.42 (7)N1—C3—C2111.68 (12)
C4—S1—C1'100.1 (3)N1—C3—C2'111.7 (3)
C4—N1—C5105.63 (11)N1—C3—H3A109.3
C4—N1—C3128.79 (12)C2—C3—H3A109.3
C5—N1—C3125.55 (11)N1—C3—H3B109.3
C4—N2—C6103.85 (11)C2—C3—H3B109.3
C5—N3—C9113.77 (12)H3A—C3—H3B107.9
C2—C1—S1111.42 (14)N1—C3—H3C109.3
C2—C1—H1A109.3C2'—C3—H3C109.3
S1—C1—H1A109.3N1—C3—H3D109.3
C2—C1—H1B109.3C2'—C3—H3D109.3
S1—C1—H1B109.3H3C—C3—H3D107.9
H1A—C1—H1B108.0N2—C4—N1114.41 (12)
C1—C2—C3112.43 (15)N2—C4—S1121.96 (10)
C1—C2—H2A109.1N1—C4—S1123.61 (10)
C3—C2—H2A109.1N3—C5—N1126.67 (12)
C1—C2—H2B109.1N3—C5—C6127.66 (13)
C3—C2—H2B109.1N1—C5—C6105.67 (11)
H2A—C2—H2B107.8N2—C6—C7131.50 (12)
C2'—C1'—S1110.1 (6)N2—C6—C5110.44 (12)
C2'—C1'—H1'A109.6C7—C6—C5118.06 (12)
S1—C1'—H1'A109.6C8—C7—C6114.94 (12)
C2'—C1'—H1'B109.6C8—C7—H7122.5
S1—C1'—H1'B109.6C6—C7—H7122.5
H1'A—C1'—H1'B108.2C7—C8—C9122.59 (13)
C1'—C2'—C3111.2 (6)C7—C8—Br1119.37 (10)
C1'—C2'—H2'A109.4C9—C8—Br1118.04 (10)
C3—C2'—H2'A109.4N3—C9—C8122.97 (13)
C1'—C2'—H2'B109.4N3—C9—H9118.5
C3—C2'—H2'B109.4C8—C9—H9118.5
H2'A—C2'—H2'B108.0
C4—S1—C1—C2−42.19 (16)C1—S1—C4—N110.57 (15)
C1'—S1—C1—C249.0 (7)C1'—S1—C4—N1−12.8 (4)
S1—C1—C2—C367.0 (2)C9—N3—C5—N1−179.92 (13)
C4—S1—C1'—C2'44.5 (7)C9—N3—C5—C60.4 (2)
C1—S1—C1'—C2'−48.5 (7)C4—N1—C5—N3179.51 (14)
S1—C1'—C2'—C3−69.0 (8)C3—N1—C5—N3−2.5 (2)
C4—N1—C3—C217.2 (2)C4—N1—C5—C6−0.78 (15)
C5—N1—C3—C2−160.32 (14)C3—N1—C5—C6177.23 (13)
C4—N1—C3—C2'−19.3 (4)C4—N2—C6—C7179.69 (15)
C5—N1—C3—C2'163.2 (3)C4—N2—C6—C5−0.67 (16)
C1—C2—C3—N1−52.1 (2)N3—C5—C6—N2−179.37 (14)
C1—C2—C3—C2'44.8 (5)N1—C5—C6—N20.92 (16)
C1'—C2'—C3—N154.3 (7)N3—C5—C6—C70.3 (2)
C1'—C2'—C3—C2−42.7 (5)N1—C5—C6—C7−179.37 (12)
C6—N2—C4—N10.15 (16)N2—C6—C7—C8178.98 (14)
C6—N2—C4—S1−178.61 (10)C5—C6—C7—C8−0.6 (2)
C5—N1—C4—N20.41 (16)C6—C7—C8—C90.3 (2)
C3—N1—C4—N2−177.51 (14)C6—C7—C8—Br1179.90 (10)
C5—N1—C4—S1179.16 (10)C5—N3—C9—C8−0.9 (2)
C3—N1—C4—S11.2 (2)C7—C8—C9—N30.6 (2)
C1—S1—C4—N2−170.77 (14)Br1—C8—C9—N3−179.09 (11)
C1'—S1—C4—N2165.9 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5242).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hideg, K., Hankovszky, O., Palosi, E., Hajos, G. & Szporny, L. (1975). Ger. Patent DE 2429290 19750116.
  • Hideg, K., Hankovszky, O., Palosi, E., Hajos, G. & Szporny, L. (1976). Hung. Patent HU 12392 19761028.
  • Liszkiewicz, H., Kowalska, M. W. & Wietrzyk, J. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 199–208.
  • Prasad, A. R., Rao, A. N., Ramalingam, T. & Sattur, P. B. (1986). Indian J. Chem. Sect. B, 25, 776–778.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.
  • Yutilov, Yu. M. & Svertilova, I. A. (1988). Khim. Geterotsikl. Soedin. pp. 799–804.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography