PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1156–o1157.
Published online 2010 April 24. doi:  10.1107/S1600536810014169
PMCID: PMC2979023

1-(4-Amino­phen­yl)-3-[2-(trifluoro­meth­yl)phen­yl]prop-2-en-1-one

Abstract

The title compound, C16H12F3NO, a derivative of biologically active chalcones, comprises two benzene rings and a central –CH=CH—C(=O)– unit. The dihedral angle between the two rings is 10.9 (1)° and the mol­ecule adopts an E configuration about the central olefinic bond. The crystal structure is stabilized by inter­molecular N—H(...)O and N—H(...)N hydrogen bonds.

Related literature

For related structures, see: Narender et al. (2007 [triangle]); Kamal et al. (2008 [triangle]); Wu et al. (2009 [triangle]); Low et al. (2002 [triangle]); Yathirajan et al. (2006 [triangle]); Suwunwong et al. (2009 [triangle]). For background to and applications of chalcones, see: Heidari et al. (2009 [triangle]); Nielsen et al. (2005 [triangle]); Mojzis et al. (2008 [triangle]); Achanta et al. (2006 [triangle]); Dimmock et al. (1999 [triangle]); Liang et al. (2007a [triangle],b [triangle], 2009 [triangle]); Zhao et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1156-scheme1.jpg

Experimental

Crystal data

  • C16H12F3NO
  • M r = 291.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1156-efi1.jpg
  • a = 18.835 (3) Å
  • b = 4.7866 (8) Å
  • c = 15.177 (3) Å
  • β = 101.108 (3)°
  • V = 1342.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 273 K
  • 0.43 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.951, T max = 0.974
  • 6607 measured reflections
  • 2360 independent reflections
  • 1700 reflections with I > 2σ(I)
  • R int = 0.130

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.185
  • S = 1.00
  • 2360 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014169/zq2037sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014169/zq2037Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Zhejiang Province Extreme­ly Key Subject Building Funding (Pharmacology and Biochemical Pharmaceutics 2008), the Department of Education of Zhejiang Province (No. 20070907) and the Wenzhou Administration of Science and Technology project (No. Y20080016).

supplementary crystallographic information

Comment

Chalcones, which are open-chain flavonoids, distribute widespread in fruits, vegetables and so on. Chalcone and their derivatives are obtained from the aldol condensation of aromatic aldehydes and aromatic ketones. They are important intermediate of organic synthesis. Due to their significant biological activities such as anti-inflammatory, antibacterial, antiangiogenic, antitumor and analgesic, they have attracted more and more attention (Heidari et al., 2009; Nielsen et al., 2005; Mojzis et al., 2008; Achanta et al., 2006; Dimmock et al., 1999). The molecule of chalcone possess two phenyl rings and one –CH=CH–C(=O)– central part. The carbonyl functional group which is responsible for the antibacterial activity of these compounds is the main feature of chalcone derivatives (Suwunwong et al., 2009).

Due to the broad spectrum of biological activities of this type of compounds, various chalcone analogues have been synthesized in order to filter the better ones or the unique ones (Narender et al., 2007; Kamal et al., 2008). As a continuation of our broad program of work on the synthesis and structural study of chalcones, the title chalcone derivative has been obtained and an X-ray diffraction study was carried out.

The molecule is approximately planar and the dihedral angle between the two phenyl rings is 10.9 (1)°. The H atoms of the central propenone group are trans to each other. The average value of the phenyl bond distances [1.385 (5) Å] and bond angles [120.7 (4)°] have normal values which agree quite well with the values reported in the literature for some analogous structures (Wu et al., 2009; Low et al., 2002; Yathirajan et al., 2006). The crystal structure is stabilized by intermolecular N(1)–H1A···O(1) and N(1)–H1B···N(1) hydrogen bonds.

Experimental

1-(4-aminophenyl)ethanone (5 mmol) was dissolved in ethanol (10 ml) and a solution of KOH (40%, 5 drops) was added. The flask was immersed in bath of crushed ice and a solution of 2-(trifluoromethyl)benzaldehyde (5 mmol) in ethanol (10 ml) was added. The reaction mixture was stirred at 300 K and completion of the reaction was monitored by thin-layer chromatography. Ice-cold water was added to the reaction mixture after 24 h and the yellow solid that separated was filtered off, washed with water and cold ethanol, dried and purified by column chromatography on silica gel (yield: 68%). Single crystals of the title compound were grown in a CH2Cl2/CH3OH mixture (7:3 v/v) by slow evaporation at 277 K.

Refinement

The H atoms were positioned geometrically (C—H = 0.93 and N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C16H12F3NOF(000) = 600
Mr = 291.27Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1903 reflections
a = 18.835 (3) Åθ = 2.7–25.4°
b = 4.7866 (8) ŵ = 0.12 mm1
c = 15.177 (3) ÅT = 273 K
β = 101.108 (3)°Block, colorless
V = 1342.7 (4) Å30.43 × 0.28 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2360 independent reflections
Radiation source: fine-focus sealed tube1700 reflections with I > 2σ(I)
graphiteRint = 0.130
[var phi] and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −21→22
Tmin = 0.951, Tmax = 0.974k = −5→5
6607 measured reflectionsl = −18→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.185w = 1/[σ2(Fo2) + (0.1025P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2360 reflectionsΔρmax = 0.23 e Å3
191 parametersΔρmin = −0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.005 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.34496 (14)−0.3803 (5)0.79335 (18)0.0501 (6)
C20.36516 (11)−0.4190 (5)0.70442 (16)0.0410 (6)
C30.42148 (13)−0.6043 (6)0.69850 (19)0.0522 (7)
H30.4457−0.69520.74970.063*
C40.44121 (14)−0.6525 (6)0.6172 (2)0.0604 (8)
H40.4786−0.77620.61350.073*
C50.40580 (14)−0.5182 (6)0.5413 (2)0.0593 (8)
H50.4193−0.55020.48640.071*
C60.34998 (13)−0.3352 (6)0.54698 (18)0.0529 (7)
H60.3263−0.24640.49500.063*
C70.32798 (12)−0.2792 (5)0.62745 (16)0.0412 (6)
C80.26836 (13)−0.0800 (5)0.62980 (17)0.0476 (6)
H80.2543−0.05560.68480.057*
C90.23372 (13)0.0641 (5)0.56274 (18)0.0486 (6)
H90.24680.04080.50720.058*
C100.17464 (12)0.2634 (5)0.56880 (16)0.0416 (6)
C110.14526 (11)0.4364 (4)0.48894 (16)0.0375 (6)
C120.17160 (12)0.4283 (5)0.40932 (17)0.0449 (6)
H120.20900.30570.40460.054*
C130.14390 (12)0.5965 (5)0.33733 (17)0.0469 (6)
H130.16280.58610.28520.056*
C140.08774 (11)0.7824 (5)0.34190 (16)0.0416 (6)
C150.05970 (12)0.7888 (5)0.42057 (18)0.0459 (6)
H150.02150.90840.42460.055*
C160.08779 (12)0.6204 (5)0.49211 (17)0.0431 (6)
H160.06830.62860.54390.052*
F10.34613 (11)−0.1107 (3)0.81944 (11)0.0793 (6)
F20.27876 (9)−0.4720 (4)0.79671 (12)0.0768 (6)
F30.38918 (9)−0.5133 (4)0.86064 (11)0.0736 (6)
N10.05877 (11)0.9453 (4)0.26847 (15)0.0543 (6)
H1A0.02271.05350.27070.065*
H1B0.07680.93840.22060.065*
O10.15200 (10)0.2839 (4)0.63840 (13)0.0660 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0540 (15)0.0454 (14)0.0489 (15)0.0024 (11)0.0046 (12)0.0064 (12)
C20.0363 (12)0.0409 (12)0.0441 (13)−0.0044 (10)0.0037 (10)0.0006 (11)
C30.0437 (14)0.0539 (14)0.0552 (16)0.0059 (11)0.0000 (12)0.0051 (13)
C40.0424 (14)0.0695 (17)0.0703 (19)0.0150 (13)0.0132 (13)−0.0025 (15)
C50.0568 (16)0.0717 (18)0.0522 (16)0.0089 (14)0.0179 (14)−0.0028 (14)
C60.0482 (14)0.0662 (16)0.0442 (14)0.0107 (13)0.0087 (12)0.0049 (13)
C70.0352 (12)0.0448 (13)0.0432 (13)−0.0002 (10)0.0065 (10)0.0021 (11)
C80.0443 (13)0.0562 (14)0.0439 (14)0.0075 (11)0.0127 (11)0.0048 (12)
C90.0473 (14)0.0549 (15)0.0441 (14)0.0092 (11)0.0100 (12)0.0055 (12)
C100.0351 (12)0.0461 (13)0.0433 (14)−0.0020 (10)0.0070 (10)−0.0018 (11)
C110.0289 (11)0.0391 (12)0.0443 (13)−0.0040 (9)0.0063 (10)−0.0018 (10)
C120.0340 (12)0.0507 (14)0.0508 (14)0.0063 (10)0.0103 (11)−0.0009 (12)
C130.0407 (13)0.0590 (15)0.0430 (14)0.0018 (11)0.0130 (11)0.0022 (12)
C140.0314 (11)0.0433 (12)0.0469 (14)−0.0070 (9)−0.0009 (10)0.0021 (11)
C150.0352 (12)0.0487 (13)0.0542 (15)0.0075 (10)0.0093 (11)0.0002 (12)
C160.0375 (12)0.0496 (13)0.0438 (13)−0.0004 (10)0.0118 (10)−0.0019 (11)
F10.1293 (15)0.0565 (10)0.0519 (10)0.0041 (10)0.0173 (10)−0.0057 (8)
F20.0622 (10)0.1068 (14)0.0678 (11)−0.0078 (9)0.0287 (9)0.0063 (10)
F30.0831 (12)0.0847 (12)0.0489 (10)0.0169 (9)0.0029 (9)0.0161 (8)
N10.0472 (12)0.0637 (13)0.0503 (13)0.0050 (10)0.0052 (10)0.0114 (11)
O10.0664 (12)0.0844 (14)0.0514 (11)0.0276 (10)0.0223 (10)0.0148 (10)

Geometric parameters (Å, °)

C1—F11.349 (3)C9—C101.482 (3)
C1—F21.332 (3)C9—H90.9300
C1—F31.347 (3)C10—O11.217 (3)
C1—C21.483 (4)C10—C111.484 (3)
C2—C31.399 (3)C11—C161.404 (3)
C2—C71.410 (3)C11—C121.392 (3)
C3—C41.375 (4)C12—C131.376 (3)
C3—H30.9300C12—H120.9300
C4—C51.374 (4)C13—C141.394 (3)
C4—H40.9300C13—H130.9300
C5—C61.384 (4)C14—N11.383 (3)
C5—H50.9300C14—C151.396 (3)
C6—C71.389 (3)C15—C161.374 (3)
C6—H60.9300C15—H150.9300
C7—C81.479 (3)C16—H160.9300
C8—C91.296 (4)N1—H1A0.8600
C8—H80.9300N1—H1B0.8600
F1—C1—F2105.4 (2)C8—C9—C10124.3 (2)
F1—C1—F3104.9 (2)C8—C9—H9117.8
F2—C1—F3105.2 (2)C10—C9—H9117.8
F1—C1—C2113.2 (2)O1—C10—C11121.7 (2)
F2—C1—C2113.6 (2)O1—C10—C9119.9 (2)
F3—C1—C2113.7 (2)C11—C10—C9118.3 (2)
C3—C2—C7120.6 (2)C16—C11—C12116.9 (2)
C3—C2—C1117.9 (2)C16—C11—C10119.4 (2)
C7—C2—C1121.4 (2)C12—C11—C10123.7 (2)
C4—C3—C2120.2 (3)C13—C12—C11121.9 (2)
C4—C3—H3119.9C13—C12—H12119.0
C2—C3—H3119.9C11—C12—H12119.0
C3—C4—C5120.1 (2)C12—C13—C14120.6 (2)
C3—C4—H4119.9C12—C13—H13119.7
C5—C4—H4119.9C14—C13—H13119.7
C6—C5—C4119.7 (3)N1—C14—C15121.4 (2)
C6—C5—H5120.1N1—C14—C13120.3 (2)
C4—C5—H5120.1C15—C14—C13118.2 (2)
C5—C6—C7122.4 (3)C16—C15—C14120.8 (2)
C5—C6—H6118.8C16—C15—H15119.6
C7—C6—H6118.8C14—C15—H15119.6
C6—C7—C2116.9 (2)C15—C16—C11121.6 (2)
C6—C7—C8120.1 (2)C15—C16—H16119.2
C2—C7—C8123.0 (2)C11—C16—H16119.2
C9—C8—C7126.4 (2)C14—N1—H1A120.0
C9—C8—H8116.8C14—N1—H1B120.0
C7—C8—H8116.8H1A—N1—H1B120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.423.235 (3)158
N1—H1B···O1ii0.862.453.162 (3)140

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2037).

References

  • Achanta, G., Modzelewska, A., Feng, L., Khan, S. R. & Huang, P. (2006). Mol. Pharmacol 70, 426–433. [PubMed]
  • Bruker (2001). SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem 6, 1125–1150. [PubMed]
  • Heidari, M. R., Foroumadi, A., Noroozi, H., Samzadeh-Kermani, A. & Azimzadeh, B. S. (2009). Pak. J. Pharm. Sci. 22, 395–401. [PubMed]
  • Kamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, V. (2008). Bioorg. Med. Chem. Lett.18, 2434–2439. [PubMed]
  • Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). Bioorg. Med. Chem. 17, 2623–2631. [PubMed]
  • Liang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007a). Acta Cryst. E63, o3630.
  • Liang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007b). Acta Cryst. E63, o4118.
  • Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45. [PubMed]
  • Mojzis, J., Varinska, L., Mojzisova, G., Kostova, I. & Mirossay, L. (2008). Pharmacol. Res 57, 259–265. [PubMed]
  • Narender T., Reddy K.P., Shweta, Srivastava K., Mishra D.K., Puri S.K. (2007). Org Lett.9, 5369–5372. [PubMed]
  • Nielsen, S. F., Larsen, M., Boesen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem 48, 2667–2677. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576. [PMC free article] [PubMed]
  • Wu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, o2805. [PMC free article] [PubMed]
  • Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629–o3630.
  • Zhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Li, X. X., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem.18, 2388–2393. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography