PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1223.
Published online 2010 April 30. doi:  10.1107/S1600536810015333
PMCID: PMC2979019

2-Cyclo­hexyl-4-methyl­tetra­hydro­pyran-4-ol1

Abstract

In the title compound, C12H22O2, the 4-methyl­tetra­hydro­pyran-4-ol ring adopts a conformation close to that of a chair and with the two O atoms syn; the cyclo­hexyl group occupies an equatorial position and adopts a chair conformation. In the crystal packing, supra­molecular chains along the b axis are sustained by O—H(...)O hydrogen bonds. These are connected into undulating layers in the ab plane by C—H(...)O inter­actions.

Related literature

For background to the solvent-free catalysed synthesis of tetra­hydro­pyran odorants, see: Macedo et al. (2010 [triangle]). For conformational analysis, see: Cremer & Pople (1975 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-o1223-scheme1.jpg

Experimental

Crystal data

  • C12H22O2
  • M r = 198.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1223-efi1.jpg
  • a = 5.5714 (10) Å
  • b = 11.0182 (12) Å
  • c = 18.753 (3) Å
  • V = 1151.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 153 K
  • 0.20 × 0.10 × 0.08 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.510, T max = 1.000
  • 8308 measured reflections
  • 1404 independent reflections
  • 1338 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.107
  • S = 1.18
  • 1404 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3( Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015333/su2176sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015333/su2176Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank FAPESP, CNPq (306532/2009-3 to JZS) and CAPES for financial support.

supplementary crystallographic information

Comment

The structure of the title compound, (I), was investigated as a part of a study into the solvent-free catalysed synthesis of tetrahydropyran odorants (Macedo et al., 2010). The key observation in the molecular structure is the syn relationship of the oxygen atoms. The six-membered 4-methyltetrahydropyran-4-ol ring adopts a conformation close to a chair as defined by the ring-puckering parameters of q2 = 0.041 (2) Å, q3 = -0.559 (2) Å, Q = 0.560 (2) Å, θ = 176.6 (2) °, and [var phi]2 = 159 (3) ° (Cremer & Pople, 1975). The cyclohexyl substituent occupies an equatorial position and adopts an almost perfect chair conformation. In the crystal packing, O–H···O hydrogen bonding leads to the formation of supramolecular chains along the b axis, Table 1. These are connected by C–H···O contacts into a 2-D array in the ab plane, Fig. 2 and Table 1. The layers have an undulating topology and the pendent cyclohexyl rings inter-digitate along the c axis, Fig. 3.

Experimental

The preparation and characterisation is as described in the literature (Macedo et al., 2010). The compound was dissolved in a mixture of hexane:ethyl acetate (2:1) and left to stand for five days at room temperature. The white irregular crystals were collected and washed with a small amount of hexane before drying in air.

Refinement

The H atoms were geometrically placed (O—H = 0.92 Å and C—H = 0.98-1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, O) or 1.5Ueq(methyl-C). In the absence of significant anomalous scattering effects, 1934 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of a supramolecular layer in (I) in the ab plane. The O–H···O hydrogen bonds and C–H···O contacts are shown as orange and blue dashed lines, respectively. Colour code: O, red; C, grey; ...
Fig. 3.
Stacking of undulating layers in (I) along the c direction. The O–H···O hydrogen bonds are shown as orange dashed lines. Colour code: O, red; C, grey; and H, green.

Crystal data

C12H22O2F(000) = 440
Mr = 198.30Dx = 1.144 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3569 reflections
a = 5.5714 (10) Åθ = 2.9–30.1°
b = 11.0182 (12) ŵ = 0.08 mm1
c = 18.753 (3) ÅT = 153 K
V = 1151.2 (3) Å3Prism, colourless
Z = 40.20 × 0.10 × 0.08 mm

Data collection

Rigaku AFC12K/SATURN724 diffractometer1404 independent reflections
Radiation source: fine-focus sealed tube1338 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 26.5°, θmin = 2.9°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −5→6
Tmin = 0.510, Tmax = 1.000k = −13→13
8308 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.18w = 1/[σ2(Fo2) + (0.0449P)2 + 0.288P] where P = (Fo2 + 2Fc2)/3
1404 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. In the absence of significant anomalous scattering effects, 967 Friedel pairs were averaged in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2884 (3)0.09963 (12)0.27691 (8)0.0230 (4)
O2−0.2092 (3)0.37416 (14)0.28439 (9)0.0274 (4)
H1o−0.21180.44520.25860.033*
C20.2556 (4)0.15401 (18)0.34614 (11)0.0208 (5)
H2A0.39800.20600.35730.025*
C30.0318 (4)0.23271 (19)0.34544 (12)0.0230 (5)
H3A0.01700.27400.39210.028*
H3B−0.11050.17990.33940.028*
C40.0323 (4)0.32838 (19)0.28640 (12)0.0220 (5)
C50.0907 (4)0.26595 (19)0.21548 (12)0.0233 (5)
H5A−0.04630.21430.20110.028*
H5B0.11420.32830.17810.028*
C60.3154 (5)0.18839 (19)0.22109 (12)0.0241 (5)
H6A0.34460.14680.17510.029*
H6B0.45550.24080.23140.029*
C70.2457 (5)0.04850 (19)0.39950 (11)0.0212 (5)
H70.1038−0.00300.38720.025*
C80.4706 (5)−0.0307 (2)0.39425 (12)0.0262 (6)
H8A0.4827−0.06430.34540.031*
H8B0.61420.02020.40280.031*
C90.4676 (5)−0.1351 (2)0.44794 (12)0.0313 (6)
H9A0.3330−0.19050.43670.038*
H9B0.6190−0.18170.44410.038*
C100.4400 (5)−0.0879 (2)0.52343 (12)0.0296 (6)
H10A0.5826−0.03900.53630.036*
H10B0.4299−0.15720.55690.036*
C110.2151 (5)−0.0102 (2)0.53033 (12)0.0307 (6)
H11A0.20660.02380.57920.037*
H11B0.0716−0.06160.52290.037*
C120.2135 (5)0.0940 (2)0.47612 (11)0.0281 (6)
H12A0.34460.15140.48770.034*
H12B0.05960.13850.47980.034*
C130.2059 (5)0.43185 (19)0.30228 (12)0.0246 (5)
H13A0.20060.49110.26330.037*
H13B0.36910.39950.30670.037*
H13C0.15950.47150.34700.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0312 (9)0.0196 (7)0.0183 (7)0.0014 (7)0.0004 (7)−0.0011 (6)
O20.0215 (8)0.0250 (8)0.0358 (9)0.0037 (7)0.0021 (8)0.0072 (7)
C20.0233 (12)0.0215 (10)0.0174 (10)−0.0009 (10)0.0015 (9)−0.0014 (8)
C30.0250 (12)0.0218 (10)0.0222 (10)0.0013 (10)0.0021 (10)0.0005 (9)
C40.0217 (12)0.0204 (10)0.0238 (10)0.0006 (9)0.0013 (10)−0.0003 (9)
C50.0275 (12)0.0213 (10)0.0211 (11)−0.0026 (10)−0.0024 (10)0.0014 (9)
C60.0290 (13)0.0225 (10)0.0208 (10)−0.0008 (10)0.0033 (11)0.0019 (9)
C70.0230 (13)0.0209 (10)0.0198 (10)0.0001 (10)0.0004 (10)0.0012 (8)
C80.0273 (14)0.0278 (12)0.0237 (11)0.0054 (11)0.0027 (11)0.0017 (9)
C90.0364 (15)0.0278 (12)0.0297 (12)0.0092 (12)0.0004 (12)0.0044 (10)
C100.0347 (15)0.0285 (12)0.0257 (11)0.0028 (12)−0.0031 (11)0.0076 (10)
C110.0387 (15)0.0330 (12)0.0205 (10)0.0016 (13)0.0024 (12)0.0030 (10)
C120.0371 (15)0.0262 (11)0.0209 (10)0.0052 (12)0.0037 (11)0.0016 (9)
C130.0247 (12)0.0210 (10)0.0281 (11)0.0006 (10)0.0032 (10)−0.0010 (9)

Geometric parameters (Å, °)

O1—C21.441 (2)C7—H71.0000
O1—C61.440 (2)C8—C91.529 (3)
O2—C41.438 (3)C8—H8A0.9900
O2—H1O0.9200C8—H8B0.9900
C2—C31.519 (3)C9—C101.516 (3)
C2—C71.535 (3)C9—H9A0.9900
C2—H2A1.0000C9—H9B0.9900
C3—C41.529 (3)C10—C111.524 (4)
C3—H3A0.9900C10—H10A0.9900
C3—H3B0.9900C10—H10B0.9900
C4—C131.524 (3)C11—C121.533 (3)
C4—C51.532 (3)C11—H11A0.9900
C5—C61.519 (3)C11—H11B0.9900
C5—H5A0.9900C12—H12A0.9900
C5—H5B0.9900C12—H12B0.9900
C6—H6A0.9900C13—H13A0.9800
C6—H6B0.9900C13—H13B0.9800
C7—C81.530 (3)C13—H13C0.9800
C7—C121.532 (3)
C2—O1—C6112.68 (15)C2—C7—H7108.0
C4—O2—H1O109.1C9—C8—C7112.20 (19)
O1—C2—C3109.48 (17)C9—C8—H8A109.2
O1—C2—C7106.08 (15)C7—C8—H8A109.2
C3—C2—C7114.10 (18)C9—C8—H8B109.2
O1—C2—H2A109.0C7—C8—H8B109.2
C3—C2—H2A109.0H8A—C8—H8B107.9
C7—C2—H2A109.0C10—C9—C8110.99 (19)
C2—C3—C4113.48 (18)C10—C9—H9A109.4
C2—C3—H3A108.9C8—C9—H9A109.4
C4—C3—H3A108.9C10—C9—H9B109.4
C2—C3—H3B108.9C8—C9—H9B109.4
C4—C3—H3B108.9H9A—C9—H9B108.0
H3A—C3—H3B107.7C9—C10—C11110.8 (2)
O2—C4—C13109.66 (17)C9—C10—H10A109.5
O2—C4—C3105.02 (18)C11—C10—H10A109.5
C13—C4—C3112.05 (18)C9—C10—H10B109.5
O2—C4—C5109.49 (18)C11—C10—H10B109.5
C13—C4—C5111.76 (19)H10A—C10—H10B108.1
C3—C4—C5108.63 (17)C10—C11—C12111.7 (2)
C6—C5—C4111.56 (18)C10—C11—H11A109.3
C6—C5—H5A109.3C12—C11—H11A109.3
C4—C5—H5A109.3C10—C11—H11B109.3
C6—C5—H5B109.3C12—C11—H11B109.3
C4—C5—H5B109.3H11A—C11—H11B107.9
H5A—C5—H5B108.0C11—C12—C7112.08 (18)
O1—C6—C5110.25 (18)C11—C12—H12A109.2
O1—C6—H6A109.6C7—C12—H12A109.2
C5—C6—H6A109.6C11—C12—H12B109.2
O1—C6—H6B109.6C7—C12—H12B109.2
C5—C6—H6B109.6H12A—C12—H12B107.9
H6A—C6—H6B108.1C4—C13—H13A109.5
C8—C7—C12110.03 (19)C4—C13—H13B109.5
C8—C7—C2111.11 (18)H13A—C13—H13B109.5
C12—C7—C2111.57 (17)C4—C13—H13C109.5
C8—C7—H7108.0H13A—C13—H13C109.5
C12—C7—H7108.0H13B—C13—H13C109.5
C6—O1—C2—C359.9 (2)O1—C2—C7—C856.2 (2)
C6—O1—C2—C7−176.59 (18)C3—C2—C7—C8176.83 (18)
O1—C2—C3—C4−54.8 (2)O1—C2—C7—C12179.4 (2)
C7—C2—C3—C4−173.46 (18)C3—C2—C7—C12−60.0 (3)
C2—C3—C4—O2167.77 (17)C12—C7—C8—C954.8 (3)
C2—C3—C4—C13−73.3 (2)C2—C7—C8—C9178.84 (19)
C2—C3—C4—C550.7 (2)C7—C8—C9—C10−56.7 (3)
O2—C4—C5—C6−165.23 (17)C8—C9—C10—C1156.2 (3)
C13—C4—C5—C673.1 (2)C9—C10—C11—C12−55.4 (3)
C3—C4—C5—C6−51.1 (2)C10—C11—C12—C754.6 (3)
C2—O1—C6—C5−61.8 (2)C8—C7—C12—C11−53.5 (3)
C4—C5—C6—O157.0 (2)C2—C7—C12—C11−177.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1o···O1i0.921.882.773 (2)164
C13—H13b···O2ii0.982.403.337 (3)159
C6—H6b···O2ii0.992.583.552 (3)168

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x+1, y, z.

Footnotes

1Data reported in this paper were previously deposited with the CCDC (746915).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2176).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Macedo, A., Wendler, E. P., Dos Santos, A. A., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). J. Braz. Chem. Soc In the press.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography