PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m527.
Published online 2010 April 17. doi:  10.1107/S1600536810012997
PMCID: PMC2979014

catena-Poly[[[aqua­copper(II)]bis­[μ-bis(3,5-dimethyl-1H-pyrazol-4-yl) selenide]] bis­(tetra­fluorido­borate) bis­(triphenyl­phosphine oxide) monohydrate]

Abstract

The title compound, {[Cu(C10H14N4Se)2(H2O)](BF4)2·2C18H15PO·H2O}n, has a polymeric structure where each CuII ion adopts a square-pyramidal coordination constituted by four N atoms of pyrazole moieties in the equatorial plane and an axial O atom of a water mol­ecule. A pair of bis­(3,5-dimethyl-1H-pyrazol-4-yl) selenide ligands bridges the CuII centres into a chain extending along the c axis. The water mol­ecules, anions and triphenyl­phosphine oxide mol­ecules are involved in inter­molecular hydrogen bonding, which links the chains into a three-dimensional network.

Related literature

For general background, see: Farha et al. (2009 [triangle]); Shibahara et al. (2007 [triangle]); Zhang et al. (2009 [triangle]). For related structures, see: Seredyuk et al. (2007 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m527-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H14N4Se)2(H2O)](BF4)2·2C18H15OP·H2O
  • M r = 1386.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m527-efi1.jpg
  • a = 21.4560 (4) Å
  • b = 15.3590 (4) Å
  • c = 18.4910 (6) Å
  • β = 97.74 (2)°
  • V = 6038.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.70 mm−1
  • T = 100 K
  • 0.09 × 0.07 × 0.04 mm

Data collection

  • Kuma KM4 CCD area-detector diffractometer
  • 34362 measured reflections
  • 6876 independent reflections
  • 6210 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.082
  • S = 1.16
  • 6876 reflections
  • 384 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: KM-4-CCD (Kuma, 1999 [triangle]); cell refinement: KM-4-CCD; data reduction: KM-4-CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012997/ds2023sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012997/ds2023Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263-2008)

supplementary crystallographic information

Comment

Study of organometallic polymers is a well elaborated research area in coordination chemistry. Infinite molecular polymeric arrays are potentially applicable as specifically ordered crystalline substances with reversible selective sorption (Farha et al., 2009; Zhang et al., 2009), electrical conductivity (Zhang et al., 2009) and molecular magnetism functionality (Shibahara et al., 2007).

The title compound, [Cu(H2O)(C10H14N4Se)2][(BF4)2.(Ph3PO)2.H2O, was prepared in a water–methanolic medium by mixing solutions of Cu(BF4)2.6H2O and the mixture of the ligand bis(3,5-dimethyl-1H-pyrazolyl)selenide (L) and trisphenylphosphine oxide. It has similar structure to the copper compounds reported recently (Seredyuk et al., 2007, 2009). A pyramidal environment of the CuII ion is constituted by four non-coplanar N atoms of pyrazolyl cycles (distances Cu—N are 1.997 (2) and 2.040 (2) Å, distance Cu—O is 2.222 (2) Å). Symmetrically equivalent ligand molecules in cis-bonding configuration are linked to CuII ion in a double-stranded bridge fashion (Fig. 1). Formed one-dimensional linear chain is running along the c axis where each Cu atom deviates from the average position by a value of ±0.279 (0) Å (Fig. 2). One of the pyrazole cycles of the ligand molecule is involved in hydrogen bonding with F atom of the tetrafluoroborate anion (N···F 2.861 (3) Å) which additionally forms a hydrogen bond with the free water molecule (F···OW 3.002 (3) Å). Further, the coordinated water molecule is connected through hydrogen bonds with the free water molecule (O···OW 2.785 (3) Å) and the Ph3PO molecule (O···O 3.115 (3) Å).

Experimental

Bis(3,5-dimethyl-1H-pyrazolyl)selenide was prepared according to early reported method (Seredyuk et al., 2007). Copper(II) tetrafluoroborate hexahydrate (0.065 g, 0.19 mmol) in water (5 ml) was added to 5 ml of hot methanol solution of the ligand (0.100 g, 0.37 mmol) and thisphenylphosphine oxide (0.052 g, 0.19 mmol). After several days green crystals of the title compound suitable for X-ray analysis were isolated. Found: C 49.06, H 4.43, N 8.22; C56H62B2CuF8N8O4P2Se2 requires: C 49.16, H 4.57, N 8.19.

Refinement

The H atoms were located from the difference Fourier map and were constrained to ride on their parent atoms with Uiso = 1.2–1.5Ueq(parent atom). The highest peak is located 0.90 Å from atom F3 and the deepest hole is located 0.67 Å from atom F2.

Figures

Fig. 1.
A portion of the crystal structure of the title compound showing the labeling scheme and 80% probability displacement ellipsoids [(i) 1.5 - x, 1.5 - y, 1 - z; (ii) 1.5 - x, 0.5 + y, 1.5 - z; (iii) -0.5 + x, 1.5 - y, 0.5 + z; (iv) 1 - x, 1 + y, 1.5 - z]. ...
Fig. 2.
A packing diagram of the title compound. H atoms are omitted for clarity.

Crystal data

[Cu(C10H14N4Se)2(H2O)](BF4)2·2C18H15OP·H2OF(000) = 2820
Mr = 1386.17Dx = 1.525 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 34362 reflections
a = 21.4560 (4) Åθ = 3.1–28.5°
b = 15.3590 (4) ŵ = 1.70 mm1
c = 18.4910 (6) ÅT = 100 K
β = 97.74 (2)°Needle, green
V = 6038.0 (3) Å30.09 × 0.07 × 0.04 mm
Z = 4

Data collection

Kuma KM4 CCD area-detector diffractometer6210 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
graphiteθmax = 27.5°, θmin = 3.1°
ω scansh = −27→27
34362 measured reflectionsk = −19→18
6876 independent reflectionsl = −24→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.0323P)2 + 9.8106P] where P = (Fo2 + 2Fc2)/3
6876 reflections(Δ/σ)max = 0.002
384 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Experimental. The H atoms were located from the difference Fourier map and were constrained to ride on their parent atoms with Uiso = 1.2–1.5Ueq(parent atom). The highest peak is located 0.90 Å from atom F3 and the deepest hole is located 0.67 Å from atom F2.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.76965 (12)0.52259 (18)0.58609 (14)0.0230 (6)
H1A0.74630.48820.61800.035*
H1B0.75200.51260.53510.035*
H1C0.76640.58450.59770.035*
C20.83728 (11)0.49578 (16)0.59738 (12)0.0161 (5)
C30.87223 (11)0.44383 (15)0.55608 (12)0.0150 (5)
C40.93294 (11)0.43713 (15)0.59578 (12)0.0140 (5)
C50.98757 (11)0.38947 (16)0.57328 (13)0.0163 (5)
H5A1.01320.42960.54850.025*
H5B0.97240.34210.54000.025*
H5C1.01310.36530.61650.025*
C60.97077 (12)0.35740 (16)0.37061 (14)0.0199 (5)
H6A0.98450.34310.32360.030*
H6B0.94940.30700.38850.030*
H6C1.00750.37250.40590.030*
C70.92668 (11)0.43281 (15)0.36128 (12)0.0142 (5)
C80.87522 (11)0.45220 (15)0.39826 (12)0.0134 (5)
C90.84777 (11)0.52685 (16)0.36613 (12)0.0156 (5)
C100.78973 (12)0.57463 (17)0.37889 (14)0.0207 (5)
H10A0.78550.62740.34890.031*
H10B0.79260.59060.43050.031*
H10C0.75300.53720.36560.031*
C110.93216 (12)0.04009 (16)0.84170 (13)0.0172 (5)
C120.97655 (13)−0.02714 (16)0.84964 (13)0.0204 (5)
H121.0177−0.01660.87400.024*
C130.96033 (14)−0.10957 (17)0.82184 (15)0.0264 (6)
H130.9906−0.15510.82690.032*
C140.90039 (15)−0.12532 (19)0.78687 (15)0.0326 (7)
H140.8894−0.18180.76830.039*
C150.85628 (15)−0.0592 (2)0.77881 (15)0.0328 (7)
H150.8151−0.07040.75470.039*
C160.87171 (13)0.02374 (18)0.80581 (14)0.0252 (6)
H160.84130.06900.79990.030*
C170.89479 (12)0.09403 (16)0.99831 (13)0.0192 (5)
H170.90650.03650.98690.023*
C180.86575 (12)0.10921 (18)1.06015 (14)0.0234 (6)
H180.85800.06201.09090.028*
C190.84825 (13)0.19234 (19)1.07704 (15)0.0263 (6)
H190.82850.20241.11930.032*
C200.90673 (11)0.16311 (15)0.95319 (13)0.0151 (5)
C211.07652 (13)0.14666 (17)0.86366 (15)0.0234 (6)
H211.06310.14650.81260.028*
C221.11652 (13)0.14863 (17)1.01317 (15)0.0236 (6)
H221.13040.14961.06420.028*
C231.05261 (12)0.14969 (16)0.98780 (13)0.0183 (5)
H231.02280.15101.02150.022*
C241.03194 (12)0.14881 (15)0.91255 (13)0.0160 (5)
C251.16016 (13)0.14610 (17)0.96428 (16)0.0262 (6)
H251.20380.14530.98190.031*
C260.88851 (13)0.24716 (17)0.97001 (15)0.0244 (6)
H260.89590.29450.93920.029*
C270.85963 (14)0.26146 (19)1.03183 (16)0.0311 (7)
H270.84760.31881.04340.037*
C281.14020 (13)0.14472 (19)0.88991 (16)0.0283 (6)
H281.17030.14240.85670.034*
N10.87644 (9)0.51791 (13)0.65756 (10)0.0159 (4)
H1N0.86550.55100.69260.019*
N20.93546 (9)0.48303 (13)0.65830 (10)0.0132 (4)
N30.93111 (9)0.49421 (12)0.30991 (10)0.0130 (4)
N40.88268 (9)0.55081 (13)0.31437 (10)0.0140 (4)
H4N0.87520.59730.28670.017*
O11.00000.33717 (15)0.75000.0184 (5)
H1O0.98100.30470.77360.028*
O20.93330 (8)0.21702 (11)0.81896 (9)0.0200 (4)
O1W0.84524 (9)0.31134 (11)0.72590 (10)0.0238 (4)
H1W0.80410.29730.72070.036*
H2W0.86870.26520.75050.036*
Cu11.00000.48181 (3)0.75000.01134 (9)
Se10.841882 (11)0.382203 (16)0.468941 (12)0.01567 (7)
P10.94959 (3)0.14841 (4)0.87644 (3)0.01450 (13)
B10.71450 (15)0.1759 (2)0.75026 (17)0.0261 (7)
F40.65217 (8)0.17089 (10)0.76495 (9)0.0292 (4)
F30.75223 (9)0.21024 (12)0.81081 (10)0.0423 (5)
F10.73540 (9)0.09284 (12)0.73760 (10)0.0459 (5)
F20.71809 (9)0.22853 (14)0.68996 (10)0.0503 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0159 (13)0.0333 (15)0.0200 (13)0.0052 (11)0.0030 (10)−0.0026 (11)
C20.0145 (12)0.0212 (12)0.0127 (11)0.0000 (10)0.0028 (9)0.0022 (9)
C30.0155 (12)0.0189 (12)0.0111 (11)−0.0018 (9)0.0037 (9)0.0021 (9)
C40.0172 (12)0.0148 (11)0.0107 (11)−0.0012 (9)0.0045 (9)0.0027 (9)
C50.0153 (12)0.0201 (12)0.0134 (11)0.0030 (10)0.0014 (9)−0.0025 (9)
C60.0209 (13)0.0201 (13)0.0197 (12)0.0031 (10)0.0064 (10)0.0033 (10)
C70.0136 (12)0.0179 (12)0.0111 (11)−0.0026 (9)0.0016 (9)−0.0020 (9)
C80.0115 (11)0.0179 (12)0.0107 (10)−0.0023 (9)0.0015 (9)−0.0026 (9)
C90.0154 (12)0.0197 (12)0.0116 (11)−0.0007 (10)0.0019 (9)−0.0018 (9)
C100.0175 (13)0.0262 (14)0.0191 (12)0.0042 (10)0.0045 (10)−0.0011 (10)
C110.0211 (13)0.0197 (12)0.0118 (11)−0.0025 (10)0.0053 (9)0.0012 (9)
C120.0236 (14)0.0201 (13)0.0184 (12)−0.0010 (10)0.0062 (10)0.0004 (10)
C130.0363 (16)0.0205 (13)0.0245 (13)−0.0015 (12)0.0119 (12)−0.0022 (11)
C140.048 (2)0.0277 (15)0.0234 (14)−0.0133 (14)0.0115 (13)−0.0091 (12)
C150.0329 (17)0.0432 (18)0.0210 (14)−0.0154 (14)−0.0015 (12)−0.0022 (12)
C160.0229 (14)0.0309 (15)0.0213 (13)−0.0015 (11)0.0017 (11)0.0016 (11)
C170.0187 (13)0.0180 (12)0.0218 (13)0.0002 (10)0.0063 (10)0.0014 (10)
C180.0212 (14)0.0280 (14)0.0223 (13)−0.0012 (11)0.0078 (11)0.0063 (11)
C190.0238 (14)0.0356 (16)0.0217 (13)−0.0007 (12)0.0114 (11)−0.0048 (11)
C200.0120 (11)0.0172 (12)0.0164 (11)0.0012 (9)0.0030 (9)0.0016 (9)
C210.0234 (14)0.0269 (14)0.0213 (13)0.0021 (11)0.0084 (11)0.0038 (11)
C220.0214 (14)0.0227 (13)0.0252 (14)0.0010 (11)−0.0020 (11)0.0023 (11)
C230.0180 (13)0.0175 (12)0.0201 (12)0.0005 (10)0.0056 (10)0.0008 (9)
C240.0166 (12)0.0127 (11)0.0194 (12)0.0010 (9)0.0045 (10)0.0016 (9)
C250.0141 (13)0.0231 (13)0.0408 (16)0.0011 (10)0.0019 (11)0.0076 (12)
C260.0254 (14)0.0187 (13)0.0318 (15)0.0015 (11)0.0140 (12)0.0033 (11)
C270.0348 (17)0.0221 (14)0.0398 (17)0.0035 (12)0.0177 (14)−0.0056 (12)
C280.0199 (14)0.0318 (15)0.0359 (16)0.0044 (11)0.0137 (12)0.0100 (12)
N10.0150 (10)0.0210 (10)0.0121 (9)0.0046 (8)0.0032 (8)−0.0002 (8)
N20.0113 (10)0.0175 (10)0.0113 (9)0.0021 (8)0.0029 (7)0.0013 (7)
N30.0120 (10)0.0157 (10)0.0114 (9)0.0017 (8)0.0018 (7)0.0006 (7)
N40.0138 (10)0.0151 (10)0.0135 (9)0.0026 (8)0.0028 (8)0.0017 (7)
O10.0212 (13)0.0162 (12)0.0203 (12)0.0000.0111 (10)0.000
O20.0196 (9)0.0212 (9)0.0195 (9)0.0008 (7)0.0038 (7)0.0072 (7)
O1W0.0204 (10)0.0215 (9)0.0283 (10)−0.0019 (8)−0.0006 (8)−0.0022 (8)
Cu10.0110 (2)0.0155 (2)0.00792 (18)0.0000.00246 (14)0.000
Se10.01537 (13)0.02050 (13)0.01152 (11)−0.00501 (10)0.00324 (8)−0.00052 (9)
P10.0146 (3)0.0151 (3)0.0144 (3)0.0005 (2)0.0040 (2)0.0027 (2)
B10.0247 (17)0.0276 (16)0.0271 (16)−0.0012 (13)0.0066 (13)−0.0015 (13)
F40.0275 (9)0.0238 (8)0.0369 (9)−0.0034 (7)0.0066 (7)0.0056 (7)
F30.0413 (11)0.0443 (11)0.0420 (10)−0.0186 (9)0.0080 (8)−0.0179 (8)
F10.0429 (11)0.0384 (10)0.0501 (12)0.0178 (9)−0.0167 (9)−0.0192 (9)
F20.0476 (12)0.0625 (13)0.0447 (11)0.0072 (10)0.0209 (9)0.0234 (10)

Geometric parameters (Å, °)

C1—C21.496 (3)C17—H170.9500
C1—H1A0.9800C18—C191.378 (4)
C1—H1B0.9800C18—H180.9500
C1—H1C0.9800C19—C271.393 (4)
C2—N11.345 (3)C19—H190.9500
C2—C31.392 (3)C20—C261.396 (3)
C3—C41.410 (3)C20—P11.806 (2)
C3—Se11.906 (2)C21—C281.387 (4)
C4—N21.349 (3)C21—C241.402 (3)
C4—C51.488 (3)C21—H210.9500
C5—H5A0.9800C22—C251.387 (4)
C5—H5B0.9800C22—C231.388 (4)
C5—H5C0.9800C22—H220.9500
C6—C71.491 (3)C23—C241.402 (3)
C6—H6A0.9800C23—H230.9500
C6—H6B0.9800C24—P11.803 (3)
C6—H6C0.9800C25—C281.384 (4)
C7—N31.351 (3)C25—H250.9500
C7—C81.407 (3)C26—C271.389 (4)
C8—C91.386 (3)C26—H260.9500
C8—Se11.905 (2)C27—H270.9500
C9—N41.344 (3)C28—H280.9500
C9—C101.491 (3)N1—N21.373 (3)
C10—H10A0.9800N1—H1N0.8800
C10—H10B0.9800N2—Cu12.0397 (19)
C10—H10C0.9800N3—N41.366 (3)
C11—C161.398 (4)N3—Cu1i1.9971 (19)
C11—C121.399 (4)N4—H4N0.8800
C11—P11.804 (2)O1—Cu12.222 (2)
C12—C131.393 (4)O1—H1O0.8082
C12—H120.9500O2—P11.5040 (17)
C13—C141.381 (4)O1W—H1W0.9003
C13—H130.9500O1W—H2W0.9489
C14—C151.383 (4)Cu1—N3ii1.9971 (19)
C14—H140.9500Cu1—N3i1.9971 (19)
C15—C161.391 (4)Cu1—N2iii2.0397 (19)
C15—H150.9500B1—F11.383 (4)
C16—H160.9500B1—F21.387 (4)
C17—C181.394 (3)B1—F31.394 (4)
C17—C201.395 (3)B1—F41.402 (4)
C2—C1—H1A109.5C18—C19—H19120.2
C2—C1—H1B109.5C27—C19—H19120.2
H1A—C1—H1B109.5C17—C20—C26119.4 (2)
C2—C1—H1C109.5C17—C20—P1121.94 (18)
H1A—C1—H1C109.5C26—C20—P1118.57 (18)
H1B—C1—H1C109.5C28—C21—C24120.0 (2)
N1—C2—C3106.0 (2)C28—C21—H21120.0
N1—C2—C1122.2 (2)C24—C21—H21120.0
C3—C2—C1131.7 (2)C25—C22—C23120.2 (2)
C2—C3—C4106.5 (2)C25—C22—H22119.9
C2—C3—Se1126.91 (18)C23—C22—H22119.9
C4—C3—Se1126.17 (17)C22—C23—C24120.1 (2)
N2—C4—C3109.6 (2)C22—C23—H23120.0
N2—C4—C5123.7 (2)C24—C23—H23120.0
C3—C4—C5126.7 (2)C21—C24—C23119.2 (2)
C4—C5—H5A109.5C21—C24—P1118.74 (19)
C4—C5—H5B109.5C23—C24—P1122.04 (19)
H5A—C5—H5B109.5C28—C25—C22120.2 (3)
C4—C5—H5C109.5C28—C25—H25119.9
H5A—C5—H5C109.5C22—C25—H25119.9
H5B—C5—H5C109.5C27—C26—C20119.9 (2)
C7—C6—H6A109.5C27—C26—H26120.0
C7—C6—H6B109.5C20—C26—H26120.0
H6A—C6—H6B109.5C26—C27—C19120.5 (3)
C7—C6—H6C109.5C26—C27—H27119.8
H6A—C6—H6C109.5C19—C27—H27119.8
H6B—C6—H6C109.5C25—C28—C21120.4 (2)
N3—C7—C8109.2 (2)C25—C28—H28119.8
N3—C7—C6121.3 (2)C21—C28—H28119.8
C8—C7—C6129.5 (2)C2—N1—N2112.47 (19)
C9—C8—C7106.4 (2)C2—N1—H1N123.8
C9—C8—Se1125.73 (18)N2—N1—H1N123.8
C7—C8—Se1127.30 (18)C4—N2—N1105.36 (18)
N4—C9—C8106.6 (2)C4—N2—Cu1130.69 (16)
N4—C9—C10122.4 (2)N1—N2—Cu1122.26 (14)
C8—C9—C10130.9 (2)C7—N3—N4105.99 (18)
C9—C10—H10A109.5C7—N3—Cu1i130.26 (16)
C9—C10—H10B109.5N4—N3—Cu1i122.83 (14)
H10A—C10—H10B109.5C9—N4—N3111.75 (19)
C9—C10—H10C109.5C9—N4—H4N124.1
H10A—C10—H10C109.5N3—N4—H4N124.1
H10B—C10—H10C109.5Cu1—O1—H1O128.2
C16—C11—C12119.5 (2)H1W—O1W—H2W108.7
C16—C11—P1118.0 (2)N3ii—Cu1—N3i158.75 (11)
C12—C11—P1122.53 (19)N3ii—Cu1—N289.38 (8)
C13—C12—C11120.0 (3)N3i—Cu1—N290.43 (8)
C13—C12—H12120.0N3ii—Cu1—N2iii90.43 (8)
C11—C12—H12120.0N3i—Cu1—N2iii89.38 (8)
C14—C13—C12120.2 (3)N2—Cu1—N2iii178.95 (11)
C14—C13—H13119.9N3ii—Cu1—O1100.62 (6)
C12—C13—H13119.9N3i—Cu1—O1100.62 (6)
C13—C14—C15120.2 (3)N2—Cu1—O190.53 (6)
C13—C14—H14119.9N2iii—Cu1—O190.53 (6)
C15—C14—H14119.9C8—Se1—C3100.52 (10)
C14—C15—C16120.5 (3)O2—P1—C24112.46 (11)
C14—C15—H15119.7O2—P1—C11112.16 (11)
C16—C15—H15119.7C24—P1—C11106.30 (11)
C15—C16—C11119.7 (3)O2—P1—C20111.92 (11)
C15—C16—H16120.2C24—P1—C20106.62 (11)
C11—C16—H16120.2C11—P1—C20106.98 (11)
C18—C17—C20120.1 (2)F1—B1—F2110.3 (2)
C18—C17—H17119.9F1—B1—F3108.6 (3)
C20—C17—H17119.9F2—B1—F3109.7 (3)
C19—C18—C17120.4 (2)F1—B1—F4108.7 (2)
C19—C18—H18119.8F2—B1—F4110.2 (2)
C17—C18—H18119.8F3—B1—F4109.3 (2)
C18—C19—C27119.7 (2)
N1—C2—C3—C40.3 (3)C3—C4—N2—N10.2 (2)
C1—C2—C3—C4−176.6 (3)C5—C4—N2—N1178.7 (2)
N1—C2—C3—Se1173.45 (17)C3—C4—N2—Cu1165.24 (16)
C1—C2—C3—Se1−3.4 (4)C5—C4—N2—Cu1−16.2 (3)
C2—C3—C4—N2−0.3 (3)C2—N1—N2—C40.0 (3)
Se1—C3—C4—N2−173.53 (16)C2—N1—N2—Cu1−166.62 (16)
C2—C3—C4—C5−178.8 (2)C8—C7—N3—N4−0.5 (2)
Se1—C3—C4—C58.0 (3)C6—C7—N3—N4177.6 (2)
N3—C7—C8—C91.3 (3)C8—C7—N3—Cu1i168.54 (16)
C6—C7—C8—C9−176.6 (2)C6—C7—N3—Cu1i−13.4 (3)
N3—C7—C8—Se1173.23 (16)C8—C9—N4—N31.3 (3)
C6—C7—C8—Se1−4.7 (4)C10—C9—N4—N3−176.2 (2)
C7—C8—C9—N4−1.6 (3)C7—N3—N4—C9−0.5 (2)
Se1—C8—C9—N4−173.66 (16)Cu1i—N3—N4—C9−170.57 (15)
C7—C8—C9—C10175.6 (2)C4—N2—Cu1—N3ii−146.4 (2)
Se1—C8—C9—C103.5 (4)N1—N2—Cu1—N3ii16.47 (17)
C16—C11—C12—C130.0 (4)C4—N2—Cu1—N3i54.8 (2)
P1—C11—C12—C13179.83 (19)N1—N2—Cu1—N3i−142.28 (17)
C11—C12—C13—C14−0.5 (4)C4—N2—Cu1—O1−45.8 (2)
C12—C13—C14—C150.5 (4)N1—N2—Cu1—O1117.09 (17)
C13—C14—C15—C16−0.1 (4)C9—C8—Se1—C3−84.4 (2)
C14—C15—C16—C11−0.4 (4)C7—C8—Se1—C3105.1 (2)
C12—C11—C16—C150.4 (4)C2—C3—Se1—C8106.5 (2)
P1—C11—C16—C15−179.4 (2)C4—C3—Se1—C8−81.6 (2)
C20—C17—C18—C190.4 (4)C21—C24—P1—O2−51.1 (2)
C17—C18—C19—C270.1 (4)C23—C24—P1—O2130.0 (2)
C18—C17—C20—C26−0.9 (4)C21—C24—P1—C1172.0 (2)
C18—C17—C20—P1175.1 (2)C23—C24—P1—C11−106.8 (2)
C25—C22—C23—C24−0.4 (4)C21—C24—P1—C20−174.10 (19)
C28—C21—C24—C230.5 (4)C23—C24—P1—C207.0 (2)
C28—C21—C24—P1−178.4 (2)C16—C11—P1—O2−52.4 (2)
C22—C23—C24—C210.2 (4)C12—C11—P1—O2127.8 (2)
C22—C23—C24—P1179.02 (19)C16—C11—P1—C24−175.71 (19)
C23—C22—C25—C280.1 (4)C12—C11—P1—C244.5 (2)
C17—C20—C26—C270.9 (4)C16—C11—P1—C2070.7 (2)
P1—C20—C26—C27−175.2 (2)C12—C11—P1—C20−109.1 (2)
C20—C26—C27—C19−0.5 (4)C17—C20—P1—O2155.2 (2)
C18—C19—C27—C26−0.1 (5)C26—C20—P1—O2−28.8 (2)
C22—C25—C28—C210.6 (4)C17—C20—P1—C24−81.5 (2)
C24—C21—C28—C25−0.9 (4)C26—C20—P1—C2494.6 (2)
C3—C2—N1—N2−0.2 (3)C17—C20—P1—C1131.9 (2)
C1—C2—N1—N2177.0 (2)C26—C20—P1—C11−152.0 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+1, z+1/2; (iii) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···F20.902.143.002 (3)161
O1W—H1W···F30.902.513.115 (3)125
O1W—H2W···O20.951.902.785 (3)155
O1—H1O···O20.811.952.752 (2)173
N1—H1N···F4iv0.882.062.861 (3)152
N4—H4N···O1Wv0.881.862.730 (3)170

Symmetry codes: (iv) −x+3/2, y+1/2, −z+3/2; (v) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2023).

References

  • Farha, O. K., Spokoyny, A. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727–1731. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kuma (1999). KM-4-CCD Software Kuma Diffraction, Wrocław, Poland.
  • Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. [PubMed]
  • Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shibahara, S., Kitagawa, H., Kubo, T. & Nakasuji, K. (2007). Inorg. Chem. Commun.10, 860–862.
  • Zhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. Engl.48, 5287–5290. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography