PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1180.
Published online 2009 April 30. doi:  10.1107/S1600536809015876
PMCID: PMC2977844

N-Acetyl-4-(benzene­sulfonamido)benzene­sulfonamide

Abstract

In the mol­ecule of the title compound, C14H14N2O5S2, the dihedral angle between the aromatic rings is 77.75 (9)°. The acetamide group is planar [maximum deviation = 0.002 (3) Å] and oriented at dihedral angles of 13.49 (21) and 73.94 (10)° with respect to the aromatic rings. An intra­molecular C—H(...)O inter­action results in the formation of a six-membered ring. In the crystal structure, inter­molecular N—H(...)O and C—H(...)O inter­actions link the mol­ecules into a three-dimensional network, forming R 2 2(20) ring motifs.

Related literature

For related structures, see: Chohan et al. (2008 [triangle], 2009 [triangle]); Deng & Mani (2006 [triangle]); Ellingboe et al. (1992 [triangle]); Shad et al. (2009 [triangle]); Tahir et al. (2008 [triangle]). For ring-motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1180-scheme1.jpg

Experimental

Crystal data

  • C14H14N2O5S2
  • M r = 354.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1180-efi1.jpg
  • a = 9.9316 (9) Å
  • b = 9.4828 (8) Å
  • c = 17.6490 (17) Å
  • β = 103.169 (5)°
  • V = 1618.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 296 K
  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.909, T max = 0.940
  • 17674 measured reflections
  • 4034 independent reflections
  • 2423 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.128
  • S = 1.02
  • 4034 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015876/hk2676sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015876/hk2676Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042-120556-PS2-275).

supplementary crystallographic information

Comment

Sulfonamides have attracted much attention, due to their extensive use in medicine. We have reported the syntheses and crystal structures of sulfonamides, which have the central portion of title compound as common (Chohan et al., 2008, 2009; Shad et al., 2009; Tahir et al., 2008). Similarly, the crystal structure of N-Methyl-N-(2-(methyl(1-methyl-1H-benzimidazol-2-yl)amino)- ethyl)-4-((methylsulfonyl)amino)-benzenesulfonamide (Ellingboe et al., 1992) has been reported, which also has a central portion as in the title compound.

In the molecule of the title compound (Fig 1), rings A (C1-C6) and B (C7-C12) are, of course, planar. The acetamide moiety C (N2/O5/C13/C14) is also planar with a maximum deviation of 0.002 (3) Å for atom C13. The diheadral angles between them are A/B = 77.75 (9), A/C = 13.49 (21) and B/C = 73.94 (10) °. The SO2 groups are oriented at a dihedral angle of 71.02 (15)°. Intramolecular C-H···O interaction (Table 1) results in the formation of a six-membered ring D (S1/O2/N1/C7/C8/H8) having twisted conformation.

In the crystal structure, intermolecular N-H···O and C-H···O interactions (Table 1) link the molecules into a three-dimensional network forming R22(20) ring motifs (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure.

Experimental

The title compound was synthesized according to a literature method (Deng & Mani, 2006). For the preparation of the title compound, phenylglycine (2 g, 5.3 mmol) was dissolved in distilled water, and then benzene sulfonyl chloride (0.93 g, 5.3 mmol) was added. It was stirred at room temperature. During the reaction pH was maintained at 8-9, strictly using Na2CO3 (1 M), since HCl was produced as a byproduct, which lowers the pH. The completion of reaction was observed by the consumption of the oily drops of benzene sulfonyl chloride. On completion, pH was adjusted to 2-3 using HCl (2 N). The precipitate formed was filtered, washed with distilled water and recrystalyzed from methanol.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H14N2O5S2F(000) = 736
Mr = 354.39Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4034 reflections
a = 9.9316 (9) Åθ = 2.4–28.3°
b = 9.4828 (8) ŵ = 0.36 mm1
c = 17.6490 (17) ÅT = 296 K
β = 103.169 (5)°Prism, colorless
V = 1618.5 (3) Å30.28 × 0.22 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer4034 independent reflections
Radiation source: fine-focus sealed tube2423 reflections with I > 2σ(I)
graphiteRint = 0.060
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −11→12
Tmin = 0.909, Tmax = 0.940l = −22→23
17674 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.052P)2 + 0.3831P] where P = (Fo2 + 2Fc2)/3
4034 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.90183 (7)0.28463 (8)−0.04571 (4)0.0407 (3)
S20.58491 (7)0.45284 (7)0.26062 (4)0.0374 (2)
O10.9231 (2)0.3308 (2)−0.11946 (11)0.0530 (7)
O21.01569 (19)0.2335 (2)0.01166 (11)0.0546 (7)
O30.68083 (19)0.4029 (2)0.32790 (10)0.0564 (7)
O40.5257 (2)0.58953 (19)0.26098 (11)0.0510 (7)
O50.3371 (2)0.4255 (2)0.13539 (11)0.0560 (7)
N10.8361 (2)0.4215 (2)−0.01260 (12)0.0384 (7)
N20.4595 (2)0.3347 (2)0.24701 (12)0.0387 (7)
C10.7705 (3)0.1563 (3)−0.06104 (15)0.0396 (9)
C20.6519 (3)0.1794 (3)−0.11844 (17)0.0518 (11)
C30.5482 (3)0.0815 (4)−0.1295 (2)0.0703 (14)
C40.5621 (4)−0.0385 (4)−0.0833 (3)0.0759 (17)
C50.6797 (4)−0.0586 (3)−0.0265 (2)0.0729 (16)
C60.7849 (3)0.0381 (3)−0.01472 (18)0.0545 (11)
C70.7799 (2)0.4241 (3)0.05379 (14)0.0315 (8)
C80.8129 (3)0.3261 (3)0.11352 (15)0.0417 (9)
C90.7502 (3)0.3347 (3)0.17563 (14)0.0389 (9)
C100.6584 (3)0.4411 (3)0.17997 (14)0.0321 (8)
C110.6272 (3)0.5403 (3)0.12140 (17)0.0472 (10)
C120.6873 (3)0.5305 (3)0.05858 (16)0.0446 (10)
C130.3439 (3)0.3407 (3)0.18721 (15)0.0393 (9)
C140.2314 (3)0.2385 (4)0.19149 (18)0.0655 (13)
H1N0.835460.49926−0.037740.0461*
H20.642890.26019−0.149020.0622*
H2N0.467140.265480.279200.0464*
H30.468130.09538−0.167980.0843*
H40.49166−0.10523−0.090980.0910*
H50.68825−0.138770.004600.0874*
H60.864710.024090.023930.0655*
H80.876840.255220.111760.0501*
H90.770380.267630.215030.0467*
H110.566020.613310.124320.0566*
H120.665220.596580.018740.0536*
H14A0.192940.201410.140560.0984*
H14B0.160380.285760.210670.0984*
H14C0.268680.162770.226010.0984*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0359 (4)0.0556 (5)0.0317 (4)0.0099 (3)0.0102 (3)−0.0074 (3)
S20.0349 (4)0.0507 (4)0.0281 (3)−0.0047 (3)0.0104 (3)−0.0067 (3)
O10.0571 (13)0.0707 (14)0.0371 (11)0.0023 (11)0.0232 (10)−0.0102 (10)
O20.0387 (11)0.0718 (14)0.0482 (12)0.0218 (10)−0.0006 (10)−0.0091 (10)
O30.0407 (11)0.0984 (16)0.0271 (10)−0.0047 (11)0.0013 (9)−0.0017 (10)
O40.0557 (12)0.0467 (11)0.0586 (13)−0.0019 (10)0.0294 (10)−0.0167 (10)
O50.0474 (12)0.0781 (15)0.0391 (11)−0.0021 (11)0.0025 (10)0.0205 (11)
N10.0451 (13)0.0396 (12)0.0341 (12)0.0070 (10)0.0163 (10)0.0013 (10)
N20.0379 (12)0.0473 (13)0.0291 (12)−0.0050 (10)0.0042 (10)0.0113 (10)
C10.0409 (15)0.0424 (15)0.0356 (15)0.0128 (13)0.0089 (12)−0.0048 (12)
C20.0467 (18)0.0586 (19)0.0480 (18)0.0087 (15)0.0062 (15)0.0005 (15)
C30.046 (2)0.085 (3)0.074 (2)0.000 (2)0.0015 (18)−0.008 (2)
C40.072 (3)0.066 (3)0.095 (3)−0.016 (2)0.030 (2)−0.021 (2)
C50.093 (3)0.046 (2)0.082 (3)0.002 (2)0.025 (2)0.0040 (18)
C60.063 (2)0.0479 (18)0.0515 (19)0.0132 (16)0.0109 (16)−0.0028 (15)
C70.0290 (13)0.0378 (14)0.0279 (13)−0.0014 (11)0.0067 (10)−0.0040 (11)
C80.0456 (16)0.0467 (16)0.0347 (15)0.0180 (13)0.0130 (13)0.0028 (12)
C90.0460 (16)0.0421 (15)0.0291 (14)0.0109 (13)0.0095 (12)0.0051 (12)
C100.0313 (13)0.0358 (14)0.0306 (13)0.0013 (11)0.0098 (11)−0.0013 (11)
C110.0574 (18)0.0407 (16)0.0517 (18)0.0180 (14)0.0298 (15)0.0084 (13)
C120.0578 (18)0.0403 (16)0.0420 (16)0.0159 (14)0.0242 (14)0.0124 (12)
C130.0376 (15)0.0549 (17)0.0272 (14)−0.0049 (13)0.0109 (12)0.0006 (12)
C140.0526 (19)0.100 (3)0.0427 (18)−0.0311 (19)0.0083 (15)0.0000 (17)

Geometric parameters (Å, °)

S1—O11.434 (2)C7—C121.381 (4)
S1—O21.420 (2)C7—C81.387 (4)
S1—N11.621 (2)C8—C91.381 (4)
S1—C11.759 (3)C9—C101.374 (4)
S2—O31.4235 (19)C10—C111.380 (4)
S2—O41.424 (2)C11—C121.377 (4)
S2—N21.652 (2)C13—C141.494 (5)
S2—C101.745 (3)C2—H20.9300
O5—C131.208 (3)C3—H30.9300
N1—C71.408 (3)C4—H40.9300
N2—C131.372 (3)C5—H50.9300
N1—H1N0.8600C6—H60.9300
N2—H2N0.8600C8—H80.9300
C1—C61.375 (4)C9—H90.9300
C1—C21.385 (4)C11—H110.9300
C2—C31.367 (5)C12—H120.9300
C3—C41.388 (6)C14—H14A0.9600
C4—C51.368 (6)C14—H14B0.9600
C5—C61.370 (5)C14—H14C0.9600
S1···H82.8600C8···C63.517 (4)
O1···N2i2.922 (3)C9···O4xi3.237 (3)
O2···C6ii3.242 (4)C10···O53.111 (4)
O2···C5ii3.407 (4)C11···O53.142 (4)
O2···C83.116 (3)C12···O5vi3.402 (3)
O2···C14iii3.401 (4)C14···O4xii3.193 (4)
O4···O52.992 (3)C14···O2xiii3.401 (4)
O4···C8iv3.300 (3)C2···H14Bi3.0500
O4···C9iv3.237 (3)C2···H11vi2.9100
O4···C14v3.193 (4)C5···H14Ax2.9400
O5···C113.142 (4)C6···H83.0200
O5···N1vi2.839 (3)H1N···H122.3400
O5···O42.992 (3)H1N···O2vii2.9200
O5···C12vi3.402 (3)H1N···O5vi2.2500
O5···C103.111 (4)H2···O12.7900
O1···H14Ci2.8100H2···O4vi2.6900
O1···H22.7900H2···H11vi2.5200
O1···H2Ni2.1400H2···H14Bi2.5600
O2···H82.4900H2N···H14C2.2100
O2···H6ii2.8500H2N···O1ix2.1400
O2···H62.5300H3···O3xiv2.8400
O2···H1Nvii2.9200H5···H12xv2.5400
O2···H14Aiii2.5600H6···O22.5300
O3···H3viii2.8400H6···O2ii2.8500
O3···H92.6900H8···S12.8600
O4···H112.5400H8···O22.4900
O4···H14Bv2.7500H8···C63.0200
O4···H2vi2.6900H8···O4xi2.7300
O4···H8iv2.7300H9···O32.6900
O4···H9iv2.6000H9···O4xi2.6000
O5···H1Nvi2.2500H11···O42.5400
O5···H12vi2.7200H11···C2vi2.9100
N1···O5vi2.839 (3)H11···H2vi2.5200
N2···O1ix2.922 (3)H12···H1N2.3400
C1···C83.416 (4)H12···H5xvi2.5400
C4···C5x3.534 (6)H12···O5vi2.7200
C4···C4x3.515 (7)H14A···O2xiii2.5600
C5···O2ii3.407 (4)H14A···C5x2.9400
C5···C4x3.534 (6)H14B···O4xii2.7500
C6···C83.517 (4)H14B···C2ix3.0500
C6···O2ii3.242 (4)H14B···H2ix2.5600
C8···O23.116 (3)H14C···H2N2.2100
C8···C13.416 (4)H14C···O1ix2.8100
C8···O4xi3.300 (3)
O1—S1—O2119.56 (12)S2—C10—C11120.2 (2)
O1—S1—N1103.74 (11)C9—C10—C11119.9 (3)
O1—S1—C1109.21 (12)C10—C11—C12119.5 (3)
O2—S1—N1109.70 (11)C7—C12—C11121.0 (3)
O2—S1—C1108.39 (13)O5—C13—C14123.8 (3)
N1—S1—C1105.31 (12)N2—C13—C14116.0 (2)
O3—S2—O4119.85 (12)O5—C13—N2120.2 (3)
O3—S2—N2103.58 (11)C1—C2—H2121.00
O3—S2—C10109.54 (13)C3—C2—H2120.00
O4—S2—N2108.64 (11)C2—C3—H3120.00
O4—S2—C10108.16 (13)C4—C3—H3120.00
N2—S2—C10106.25 (12)C3—C4—H4120.00
S1—N1—C7125.64 (18)C5—C4—H4120.00
S2—N2—C13123.70 (18)C4—C5—H5120.00
C7—N1—H1N117.00C6—C5—H5120.00
S1—N1—H1N117.00C1—C6—H6121.00
S2—N2—H2N118.00C5—C6—H6121.00
C13—N2—H2N118.00C7—C8—H8120.00
S1—C1—C2118.7 (2)C9—C8—H8120.00
S1—C1—C6120.0 (2)C8—C9—H9120.00
C2—C1—C6121.3 (3)C10—C9—H9120.00
C1—C2—C3119.0 (3)C10—C11—H11120.00
C2—C3—C4120.1 (3)C12—C11—H11120.00
C3—C4—C5119.9 (3)C7—C12—H12119.00
C4—C5—C6120.8 (3)C11—C12—H12120.00
C1—C6—C5118.9 (3)C13—C14—H14A109.00
C8—C7—C12119.2 (2)C13—C14—H14B109.00
N1—C7—C8123.4 (2)C13—C14—H14C109.00
N1—C7—C12117.4 (2)H14A—C14—H14B109.00
C7—C8—C9119.5 (3)H14A—C14—H14C110.00
C8—C9—C10120.8 (2)H14B—C14—H14C109.00
S2—C10—C9119.9 (2)
O1—S1—N1—C7171.1 (2)S2—N2—C13—O59.3 (4)
O2—S1—N1—C7−60.1 (2)S2—N2—C13—C14−170.4 (2)
C1—S1—N1—C756.4 (2)S1—C1—C2—C3−178.6 (2)
O1—S1—C1—C2−44.2 (3)C6—C1—C2—C3−0.8 (4)
O1—S1—C1—C6137.9 (2)S1—C1—C6—C5178.4 (2)
O2—S1—C1—C2−176.0 (2)C2—C1—C6—C50.5 (5)
O2—S1—C1—C66.1 (3)C1—C2—C3—C40.4 (5)
N1—S1—C1—C266.7 (3)C2—C3—C4—C50.1 (6)
N1—S1—C1—C6−111.2 (2)C3—C4—C5—C6−0.4 (6)
O3—S2—N2—C13−179.6 (2)C4—C5—C6—C10.0 (5)
O4—S2—N2—C1352.0 (2)N1—C7—C8—C9−178.4 (2)
C10—S2—N2—C13−64.2 (2)C12—C7—C8—C91.5 (4)
O3—S2—C10—C932.2 (3)N1—C7—C12—C11179.7 (3)
O3—S2—C10—C11−146.2 (2)C8—C7—C12—C11−0.2 (4)
O4—S2—C10—C9164.5 (2)C7—C8—C9—C10−1.7 (4)
O4—S2—C10—C11−14.0 (3)C8—C9—C10—S2−177.9 (2)
N2—S2—C10—C9−79.1 (3)C8—C9—C10—C110.5 (4)
N2—S2—C10—C11102.5 (2)S2—C10—C11—C12179.2 (2)
S1—N1—C7—C822.2 (3)C9—C10—C11—C120.8 (4)
S1—N1—C7—C12−157.8 (2)C10—C11—C12—C7−1.0 (4)

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+2, −y, −z; (iii) x+1, y, z; (iv) −x+3/2, y+1/2, −z+1/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1, −y+1, −z; (vii) −x+2, −y+1, −z; (viii) x+1/2, −y+1/2, z+1/2; (ix) x−1/2, −y+1/2, z+1/2; (x) −x+1, −y, −z; (xi) −x+3/2, y−1/2, −z+1/2; (xii) −x+1/2, y−1/2, −z+1/2; (xiii) x−1, y, z; (xiv) x−1/2, −y+1/2, z−1/2; (xv) x, y−1, z; (xvi) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O5vi0.862.252.839 (3)126
N2—H2N···O1ix0.862.142.922 (3)151
C8—H8···O20.932.493.116 (3)125
C9—H9···O4xi0.932.603.237 (3)126
C14—H14A···O2xiii0.962.563.401 (4)147

Symmetry codes: (vi) −x+1, −y+1, −z; (ix) x−1/2, −y+1/2, z+1/2; (xi) −x+3/2, y−1/2, −z+1/2; (xiii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2676).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chohan, Z. H., Shad, H. A. & Tahir, M. N. (2009). Acta Cryst. E65, o57. [PMC free article] [PubMed]
  • Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648. [PMC free article] [PubMed]
  • Deng, X. & Mani, N. S. (2006). Green Chem.8, 835–838.
  • Ellingboe, J. W., Spinelli, W., Winkley, M. W., Nguyen, T. T., Parsons, R. W., Moubarak, I. F., Kitzen, J. M., Engen, D. V. & Bagli, J. F. (1992). J. Med. Chem., 35, 705–716. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Shad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98–o99.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography