PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1176.
Published online 2009 April 30. doi:  10.1107/S1600536809015499
PMCID: PMC2977841

2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl 3-bromo­benzoate

Abstract

The mol­ecule of the title compound, C13H12BrN3O4, is non-planar, as indicated in the dihedral angle of 59.5 (4)° formed between the least-squares planes through the imidazole and benzene rings. In the crystal, mol­ecules are connected via C—H(...)O contacts, forming a supra­molecular chain.

Related literature

For potential pharmacological uses of benzoic acid derivatives, see: Correa-Basurto et al. (2005 [triangle]); Jetten et al. (1987 [triangle]); Kelly et al. (2007 [triangle]); Sato et al. (2005 [triangle]). For a related structure, see: Wang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1176-scheme1.jpg

Experimental

Crystal data

  • C13H12BrN3O4
  • M r = 354.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1176-efi1.jpg
  • a = 11.871 (2) Å
  • b = 19.840 (4) Å
  • c = 7.1983 (13) Å
  • β = 124.488 (3)°
  • V = 1397.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.96 mm−1
  • T = 150 K
  • 0.20 × 0.07 × 0.03 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.589, T max = 0.916
  • 5456 measured reflections
  • 2680 independent reflections
  • 1636 reflections with I > 2σ(I)
  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.119
  • S = 0.86
  • 2680 reflections
  • 191 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.55 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1301 Friedel pairs
  • Flack parameter: 0.091 (17)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015499/tk2425sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015499/tk2425Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Pakistan Science Foundation for financial support.

supplementary crystallographic information

Comment

Derivatives of benzoic acid offer promise as compounds that possess multifunctional physiological activity (hypolesterolemic, antitumor, antithrombic, etc.) and do not cause hypervitaminosis and other side-effects (Jetten et al. 1987). It has been reported that synthesized benzoic acid derivatives of the amide- and chalcone-series show inhibitory activity of squamous cell differentiation of rabbit traeheal epithelial cell but induce differentiation of mouse embryonal carcinoma F9 and human promyelocytic leukemia HL60 cells (Correa-Basurto et al., 2005). p-Aminobenzoic acid derivatives were evaluated as acetylcholinesterase inhibitors (AChEIs) (Sato et al., 2005). Benzoic acid derivatives have also been found to exhibit cytotoxic effects on the MDA-MB-435-S—F breast cancer cell line (Kelly et al., 2007).

In the crystal structure of the title compound (I), Fig. 1, the key C=O and C—N bond distances are in agreement with those observed in the related structure of imidazolmethyl phthalimide (Wang et al., 2008).

Experimental

Metronidazole (5 g, 29.23 mmol) was added to 3-bromobenzoic acid (7.64 g, 38.01 mmol) dissolved in anhydrous CH2Cl2 (10 ml). Then 4-dimethylaminopyridine (0.15 equiv.) and dicyclohexylcarbodiimide (1.25 equiv) were added, and the resulting solution stirred. After 12 h, the solvent was evaporated under reduced pressure. The crude reaction mixture was subjected to flash column chromatography over silica gel, successively eluting with n-hexane–ethyl acetate (3:7) which afforded (I) in 70% yield. Colorless crystals were obtained from the slow evaporation of a CH2Cl2 solution of (I).

Refinement

H atoms were placed in calculated positions, C—H = 0.95–0.99 Å, and included in the riding model approximation with Uiso set to 1.5Ueq(C) for methyl-H atoms and 1.2Ueq(C) for remaining H atoms.

Figures

Fig. 1.
Molecular Structure of (I) show atom labelling and 30% displacement ellipsoids.

Crystal data

C13H12BrN3O4F(000) = 712
Mr = 354.17Dx = 1.683 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 616 reflections
a = 11.871 (2) Åθ = 3.7–23.3°
b = 19.840 (4) ŵ = 2.96 mm1
c = 7.1983 (13) ÅT = 150 K
β = 124.488 (3)°Needle, colourless
V = 1397.4 (4) Å30.20 × 0.07 × 0.03 mm
Z = 4

Data collection

Bruker APEX 2000 CCD area-detector diffractometer2680 independent reflections
Radiation source: fine-focus sealed tube1636 reflections with I > 2σ(I)
graphiteRint = 0.087
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.589, Tmax = 0.916k = −24→23
5456 measured reflectionsl = −8→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.0345P)2] where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
2680 reflectionsΔρmax = 0.66 e Å3
191 parametersΔρmin = −0.55 e Å3
2 restraintsAbsolute structure: Flack (1983), 1301 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.091 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.81001 (10)0.59782 (5)0.72927 (13)0.0588 (3)
O10.0138 (5)0.6343 (3)0.5323 (9)0.0363 (14)
O20.0896 (5)0.7074 (3)0.8019 (9)0.0434 (15)
O30.2933 (5)0.5475 (3)0.4184 (9)0.0309 (14)
O40.2623 (6)0.4375 (3)0.4381 (11)0.0437 (16)
N10.0966 (6)0.6786 (3)0.6597 (11)0.0322 (16)
N20.2152 (6)0.6769 (3)0.4669 (9)0.0234 (14)
N30.3904 (6)0.7449 (3)0.6962 (11)0.0324 (16)
C10.2023 (8)0.6976 (4)0.6362 (12)0.0261 (17)
C20.3074 (10)0.7391 (4)0.7650 (18)0.042 (3)
H20.32160.76220.89240.050*
C30.3307 (8)0.7090 (4)0.5099 (13)0.0281 (18)
C40.1261 (7)0.6329 (4)0.2730 (12)0.0280 (18)
H4A0.14130.64220.15370.034*
H4B0.02950.64360.21150.034*
C50.1513 (7)0.5597 (4)0.3332 (13)0.0294 (19)
H5A0.13440.54900.44980.035*
H5B0.09030.53150.19880.035*
C60.3328 (8)0.4832 (4)0.4592 (12)0.0222 (18)
C70.4765 (8)0.4759 (4)0.5349 (12)0.0263 (19)
C80.5272 (9)0.4134 (4)0.5409 (13)0.041 (2)
H80.46860.37540.49660.049*
C90.6614 (10)0.4036 (5)0.6098 (14)0.048 (2)
H90.69620.35960.61980.057*
C100.7422 (9)0.4597 (5)0.6630 (13)0.049 (3)
H100.83330.45380.70530.059*
C110.6978 (8)0.5231 (4)0.6579 (12)0.035 (2)
C120.5625 (7)0.5325 (4)0.5850 (12)0.032 (2)
H120.52770.57680.56880.038*
C130.3796 (8)0.7029 (4)0.3597 (13)0.043 (2)
H13A0.33190.73590.23730.064*
H13B0.36080.65730.29620.064*
H13C0.47810.71150.44720.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0321 (4)0.0955 (8)0.0384 (5)−0.0218 (7)0.0137 (4)0.0017 (7)
O10.025 (3)0.046 (4)0.035 (3)−0.002 (3)0.014 (3)0.006 (3)
O20.038 (3)0.065 (4)0.039 (3)0.001 (3)0.028 (3)−0.007 (3)
O30.025 (3)0.031 (3)0.036 (4)0.002 (3)0.017 (3)0.005 (3)
O40.042 (4)0.031 (3)0.062 (4)−0.003 (3)0.032 (4)0.005 (3)
N10.021 (4)0.044 (4)0.030 (4)0.007 (3)0.014 (3)0.013 (3)
N20.025 (4)0.028 (4)0.018 (3)−0.009 (3)0.012 (3)−0.003 (3)
N30.031 (4)0.036 (4)0.036 (4)−0.007 (3)0.022 (4)−0.012 (3)
C10.024 (4)0.031 (4)0.025 (4)−0.005 (4)0.015 (4)−0.006 (4)
C20.030 (5)0.030 (5)0.059 (7)0.003 (5)0.021 (5)0.000 (5)
C30.035 (5)0.024 (4)0.030 (5)0.006 (4)0.021 (4)0.008 (4)
C40.027 (4)0.039 (5)0.022 (4)−0.005 (4)0.017 (4)0.000 (4)
C50.021 (4)0.043 (5)0.028 (5)−0.003 (4)0.017 (4)0.008 (4)
C60.027 (5)0.028 (5)0.010 (4)−0.004 (4)0.010 (3)−0.002 (4)
C70.024 (4)0.037 (5)0.019 (4)0.005 (4)0.013 (4)−0.002 (4)
C80.044 (6)0.046 (6)0.024 (5)0.004 (5)0.014 (4)0.003 (4)
C90.049 (6)0.049 (6)0.041 (6)0.022 (5)0.023 (5)0.011 (5)
C100.038 (5)0.085 (8)0.035 (6)0.012 (5)0.027 (5)0.012 (5)
C110.029 (5)0.050 (6)0.021 (4)0.005 (4)0.011 (4)0.000 (4)
C120.025 (4)0.045 (5)0.021 (4)0.009 (4)0.010 (4)0.009 (4)
C130.053 (6)0.043 (5)0.044 (5)−0.010 (5)0.035 (5)0.006 (4)

Geometric parameters (Å, °)

Br1—C111.861 (8)C4—H4B0.9900
O1—N11.248 (7)C5—H5A0.9900
O2—N11.216 (8)C5—H5B0.9900
O3—C61.334 (9)C6—C71.475 (10)
O3—C51.451 (8)C7—C81.369 (10)
O4—C61.183 (9)C7—C121.420 (11)
N1—C11.410 (9)C8—C91.389 (12)
N2—C11.374 (9)C8—H80.9500
N2—C31.378 (9)C9—C101.375 (11)
N2—C41.468 (8)C9—H90.9500
N3—C31.317 (9)C10—C111.356 (11)
N3—C21.334 (11)C10—H100.9500
C1—C21.336 (12)C11—C121.391 (10)
C2—H20.9500C12—H120.9500
C3—C131.493 (10)C13—H13A0.9800
C4—C51.497 (10)C13—H13B0.9800
C4—H4A0.9900C13—H13C0.9800
C6—O3—C5115.6 (6)H5A—C5—H5B108.7
O2—N1—O1123.3 (6)O4—C6—O3124.8 (7)
O2—N1—C1117.7 (7)O4—C6—C7124.0 (8)
O1—N1—C1119.0 (6)O3—C6—C7111.3 (7)
C1—N2—C3105.0 (6)C8—C7—C12118.0 (7)
C1—N2—C4129.7 (6)C8—C7—C6119.7 (8)
C3—N2—C4125.2 (6)C12—C7—C6122.1 (7)
C3—N3—C2104.3 (7)C7—C8—C9122.2 (8)
C2—C1—N2105.7 (7)C7—C8—H8118.9
C2—C1—N1128.8 (8)C9—C8—H8118.9
N2—C1—N1125.4 (6)C10—C9—C8117.7 (8)
N3—C2—C1113.0 (9)C10—C9—H9121.1
N3—C2—H2123.5C8—C9—H9121.1
C1—C2—H2123.5C11—C10—C9122.9 (8)
N3—C3—N2111.8 (6)C11—C10—H10118.5
N3—C3—C13125.1 (7)C9—C10—H10118.5
N2—C3—C13123.0 (7)C10—C11—C12118.9 (8)
N2—C4—C5112.5 (6)C10—C11—Br1121.6 (7)
N2—C4—H4A109.1C12—C11—Br1119.3 (6)
C5—C4—H4A109.1C11—C12—C7120.0 (8)
N2—C4—H4B109.1C11—C12—H12120.0
C5—C4—H4B109.1C7—C12—H12120.0
H4A—C4—H4B107.8C3—C13—H13A109.5
O3—C5—C4106.1 (6)C3—C13—H13B109.5
O3—C5—H5A110.5H13A—C13—H13B109.5
C4—C5—H5A110.5C3—C13—H13C109.5
O3—C5—H5B110.5H13A—C13—H13C109.5
C4—C5—H5B110.5H13B—C13—H13C109.5
C3—N2—C1—C2−0.1 (8)C6—O3—C5—C4−173.1 (6)
C4—N2—C1—C2−177.6 (7)N2—C4—C5—O3−59.7 (7)
C3—N2—C1—N1178.8 (7)C5—O3—C6—O4−2.7 (11)
C4—N2—C1—N11.3 (12)C5—O3—C6—C7177.4 (6)
O2—N1—C1—C27.5 (12)O4—C6—C7—C813.3 (12)
O1—N1—C1—C2−173.8 (8)O3—C6—C7—C8−166.7 (7)
O2—N1—C1—N2−171.2 (7)O4—C6—C7—C12−172.0 (7)
O1—N1—C1—N27.5 (10)O3—C6—C7—C128.0 (10)
C3—N3—C2—C13.8 (10)C12—C7—C8—C94.8 (12)
N2—C1—C2—N3−2.3 (10)C6—C7—C8—C9179.8 (7)
N1—C1—C2—N3178.8 (7)C7—C8—C9—C10−3.0 (13)
C2—N3—C3—N2−3.8 (9)C8—C9—C10—C112.2 (13)
C2—N3—C3—C13176.0 (8)C9—C10—C11—C12−3.3 (13)
C1—N2—C3—N32.5 (8)C9—C10—C11—Br1−179.6 (6)
C4—N2—C3—N3−179.8 (6)C10—C11—C12—C75.1 (11)
C1—N2—C3—C13−177.3 (7)Br1—C11—C12—C7−178.5 (6)
C4—N2—C3—C130.3 (11)C8—C7—C12—C11−5.8 (11)
C1—N2—C4—C5−81.4 (9)C6—C7—C12—C11179.4 (7)
C3—N2—C4—C5101.6 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4a···O2i0.992.593.494 (10)152

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2425).

References

  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART for Windows NT/2000 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Correa-Basurto, J., Espinosa-Raya, J., Vazquez-Alcantara, I., Flores-Sandoval, C. A. & Trujillo-Ferrara, J. (2005). Chem. Biol. Interact.157, 353–434.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jetten, A. M., Anderson, K., Deas, M. A., Kagechika, H., Lotan, R., Rearick, J. I. & Shudo, K. (1987). Cancer Res.47, 3523–3527. [PubMed]
  • Kelly, P. N., Adeline, P., Siobhan, D., Isobel, O., Rosaleen, D., Alok, G., John, G. F., Alan, L. J. & Peter, K. T. M. (2007). J. Organomet. Chem.692, 1327–1331.
  • Sato, M., Shudo, K. & Hiragun, A. (2005). J. Cell. Physiol.135, 179–188. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S.-Q., Jian, F.-F. & Liu, H.-Q. (2008). Acta Cryst. E64, o1750. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography