PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1175.
Published online 2009 April 30. doi:  10.1107/S1600536809015578
PMCID: PMC2977840

Dimethyl 1-(4-cyano­benz­yl)-1H-pyrazole-3,5-dicarboxyl­ate

Abstract

The title compound, C15H13N3O4, was synthesized from dimethyl 1H-pyrazole-3,5-dicarboxyl­ate and 4-(bromo­meth­yl)benzonitrile. The inter­planar angle between the pyrazole and cyano­benzyl ring planes is 71.74 (17)° and an intramolecular C—H(...)O interaction occurs. The crystal structure is stabilized by π–π stacking inter­actions between the neighbouring pyrazole and benzene rings [centroid–centroid distances of 3.5074 (16) and 3.9401 (15) Å, respectively]. One of the methyl groups is disordered over two positions of equal occupancy.

Related literature

For the biological activity of pyrazoles, see: Chambers et al. (1985 [triangle]); Lee et al. (1989 [triangle]). Nitrile derivatives are important materials in the synthesis of some heterocyclic mol­ecules (Radl et al., 2000 [triangle]). For related structures, see: Dai et al. (2008 [triangle]); Fu & Zhao (2007 [triangle]); Xiao & Zhao (2008a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1175-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O4
  • M r = 299.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1175-efi1.jpg
  • a = 7.4981 (13) Å
  • b = 9.1753 (9) Å
  • c = 12.2884 (18) Å
  • α = 69.820 (5)°
  • β = 88.900 (6)°
  • γ = 68.818 (5)°
  • V = 734.51 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 292 K
  • 0.35 × 0.30 × 0.25 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.968, T max = 0.975
  • 7543 measured reflections
  • 3330 independent reflections
  • 1972 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.161
  • S = 1.03
  • 3330 reflections
  • 202 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015578/fb2152sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015578/fb2152Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Southeast University for Young Researchers (4007041027).

supplementary crystallographic information

Comment

Pyrazole-related molecules have attracted considerable attention due to their biological activities (Lee et al., 1989; Chambers et al., 1985). In addition, the nitrile derivatives are important materials in the synthesis of some heterocyclic molecules (Radl et al., 2000). Recently, we have reported a few benzonitrile compounds (Dai et al.,2008; Fu et al., 2007; Xiao et al.,2008a, 2008b 2008c). As an extension of our work on the structural characterization of the nitrile compounds, the structure of the title compound is reported here. The bond lengths and angles have normal values. The interplanar angle between the pyrazole and cyanobenzyloxy ring planes is 71.74 (17) °. The crystal structure is stabilized by week interactions: C—H···O interactions, C—H···π-electron ring interactions (Tab. 1) and π-π-electron ring stacking interactions (Tab. 2).

Experimental

1H-pyrazole-3,5-dicarboxylic acid dimethyl ester (0.185 mg, 1 mmol) and 4-(bromomethyl)benzonitrile (0.196 mg, 1 mmol) were dissolved in acetone (10 ml) in the presence of K2CO3 (0.138 mg, 1 mmol) and heated under reflux for 1 day. After the mixture had been cooled to room temperature, the solution was filtered and the solvent removed in vacuum to afford a white precipitate of the title compound. Colourless prisms (average size: 0.8×1.2×1.0 mm) suitable for X-ray diffraction were obtained by slow evaporation in 7 days from a solution of 100 mg of the crude product in 15 ml of diethylether.

Refinement

All the hydrogens were discernible in the difference electron density maps. In the case of the methyl C14 the corresponding triplet of maxima was broad with shallow saddles between them. All the hydrogens were situated into the idealized positions and those of C14 were modelled as disordered with two triplets of the hydrogens with equal occupation rotated by 60° to each other. The hydrogens were treated in the riding mode approximation: Caryl-H, Cmethylene-H, Cmethyl-H = 0.93, 097 and 0.96 Å, respectively. Uiso(Haryl)=1.2Ueq(Caryl); Uiso(Hmethylene)=1.2Ueq(Cmethylene); Uiso(Hmethyl)=1.5Ueq(Cmethyl).

Figures

Fig. 1.
The structure of the title molecule, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C15H13N3O4Z = 2
Mr = 299.28F(000) = 312
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4981 (13) ÅCell parameters from 1468 reflections
b = 9.1753 (9) Åθ = 2.6–27.4°
c = 12.2884 (18) ŵ = 0.10 mm1
α = 69.820 (5)°T = 292 K
β = 88.900 (6)°Prism, colourless
γ = 68.818 (5)°0.35 × 0.30 × 0.25 mm
V = 734.51 (18) Å3

Data collection

Rigaku SCXmini diffractometer3330 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.9°
ω scansh = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.968, Tmax = 0.975l = −15→15
7543 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.161w = 1/[σ2(Fo2) + (0.0703P)2 + 0.0489P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3330 reflectionsΔρmax = 0.26 e Å3
202 parametersΔρmin = −0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
62 constraintsExtinction coefficient: 0.023 (5)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.5650 (2)−0.3342 (2)0.04531 (15)0.0655 (5)
O20.5168 (3)−0.3555 (2)0.22929 (16)0.0819 (6)
O30.0543 (3)0.2623 (2)−0.24779 (14)0.0728 (5)
O4−0.1136 (3)0.4051 (2)−0.14182 (15)0.0793 (6)
N10.2237 (2)−0.0155 (2)0.13109 (15)0.0491 (5)
N20.0980 (2)0.1342 (2)0.06034 (16)0.0503 (5)
N30.8678 (4)0.2304 (3)0.4352 (3)0.0966 (9)
C10.3321 (3)−0.1079 (3)0.06994 (19)0.0468 (5)
C20.2698 (3)−0.0139 (3)−0.04608 (18)0.0479 (5)
H20.3143−0.0430−0.10980.057*
C30.1264 (3)0.1341 (3)−0.04801 (19)0.0472 (5)
C40.4791 (3)−0.2778 (3)0.1258 (2)0.0530 (6)
C50.0081 (3)0.2824 (3)−0.1475 (2)0.0515 (6)
C60.2365 (3)−0.0489 (3)0.25677 (19)0.0550 (6)
H6A0.2761−0.16860.29910.066*
H6B0.11020.00620.27650.066*
C70.3779 (3)0.0122 (3)0.29447 (18)0.0479 (5)
C80.3384 (3)0.1819 (3)0.2585 (2)0.0576 (6)
H80.22520.25810.21040.069*
C90.4644 (3)0.2392 (3)0.2932 (2)0.0581 (6)
H90.43680.35380.26870.070*
C100.6333 (3)0.1255 (3)0.36490 (19)0.0529 (6)
C110.6731 (3)−0.0434 (3)0.4016 (2)0.0588 (6)
H110.7857−0.11970.45040.071*
C120.5455 (3)−0.1000 (3)0.36587 (19)0.0548 (6)
H120.5731−0.21460.39020.066*
C130.7641 (4)0.1848 (3)0.4034 (2)0.0678 (7)
C140.7145 (4)−0.5000 (3)0.0858 (3)0.0785 (8)
H14A0.7910−0.51430.02390.118*0.50
H14B0.6569−0.58240.10900.118*0.50
H14C0.7949−0.51360.15120.118*0.50
H14D0.7042−0.55920.16550.118*0.50
H14E0.8383−0.49110.08040.118*0.50
H14F0.7003−0.56000.03820.118*0.50
C15−0.0426 (5)0.4051 (3)−0.3519 (2)0.0935 (10)
H15A−0.17840.4472−0.34650.140*
H15B−0.02030.3722−0.41870.140*
H15C0.00630.4912−0.36000.140*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0637 (10)0.0628 (11)0.0658 (11)−0.0157 (9)0.0118 (8)−0.0270 (9)
O20.0996 (15)0.0687 (12)0.0564 (12)−0.0095 (10)−0.0079 (10)−0.0207 (10)
O30.0945 (13)0.0599 (11)0.0487 (10)−0.0175 (9)0.0097 (9)−0.0142 (9)
O40.0846 (13)0.0677 (12)0.0629 (12)−0.0017 (10)−0.0013 (10)−0.0251 (10)
N10.0473 (10)0.0587 (11)0.0463 (11)−0.0240 (9)0.0023 (8)−0.0206 (9)
N20.0470 (10)0.0549 (11)0.0505 (11)−0.0196 (9)0.0001 (9)−0.0201 (9)
N30.0848 (18)0.0871 (18)0.114 (2)−0.0326 (15)−0.0303 (16)−0.0297 (16)
C10.0425 (11)0.0548 (13)0.0514 (13)−0.0252 (10)0.0057 (10)−0.0218 (11)
C20.0472 (12)0.0558 (13)0.0479 (13)−0.0250 (11)0.0070 (10)−0.0216 (11)
C30.0470 (12)0.0546 (13)0.0464 (12)−0.0260 (11)0.0028 (10)−0.0186 (10)
C40.0532 (13)0.0561 (14)0.0552 (15)−0.0251 (11)0.0009 (11)−0.0217 (12)
C50.0556 (13)0.0526 (13)0.0524 (14)−0.0250 (12)0.0041 (11)−0.0213 (11)
C60.0576 (14)0.0660 (15)0.0458 (13)−0.0274 (12)0.0074 (11)−0.0210 (11)
C70.0491 (12)0.0580 (13)0.0382 (12)−0.0194 (10)0.0045 (9)−0.0201 (10)
C80.0542 (14)0.0533 (14)0.0529 (14)−0.0120 (11)−0.0119 (11)−0.0127 (11)
C90.0589 (14)0.0514 (13)0.0596 (15)−0.0179 (11)−0.0050 (12)−0.0176 (11)
C100.0506 (13)0.0596 (14)0.0501 (13)−0.0184 (11)0.0016 (11)−0.0243 (11)
C110.0503 (13)0.0623 (15)0.0535 (14)−0.0091 (11)−0.0097 (11)−0.0210 (12)
C120.0565 (14)0.0491 (13)0.0527 (14)−0.0123 (11)−0.0022 (11)−0.0188 (11)
C130.0599 (15)0.0705 (17)0.0711 (18)−0.0220 (14)−0.0092 (13)−0.0254 (14)
C140.0675 (17)0.0608 (16)0.099 (2)−0.0087 (14)0.0076 (15)−0.0363 (16)
C150.143 (3)0.0669 (18)0.0445 (15)−0.0241 (19)0.0060 (17)−0.0054 (14)

Geometric parameters (Å, °)

O1—C41.323 (3)C7—C81.380 (3)
O1—C141.445 (3)C8—C91.371 (3)
O2—C41.203 (3)C8—H80.9300
O3—C51.330 (3)C9—C101.386 (3)
O3—C151.440 (3)C9—H90.9300
O4—C51.189 (3)C10—C111.373 (3)
N1—N21.343 (2)C10—C131.436 (3)
N1—C11.364 (3)C11—C121.382 (3)
N1—C61.465 (3)C11—H110.9300
N2—C31.345 (3)C12—H120.9300
N3—C131.136 (3)C14—H14A0.9600
C1—C21.371 (3)C14—H14B0.9600
C1—C41.471 (3)C14—H14C0.9600
C2—C31.387 (3)C14—H14D0.9600
C2—H20.9300C14—H14E0.9600
C3—C51.468 (3)C14—H14F0.9600
C6—C71.510 (3)C15—H15A0.9600
C6—H6A0.9700C15—H15B0.9600
C6—H6B0.9700C15—H15C0.9600
C7—C121.376 (3)
C4—O1—C14117.1 (2)C11—C10—C13120.0 (2)
C5—O3—C15115.7 (2)C9—C10—C13119.9 (2)
N2—N1—C1112.02 (17)C10—C11—C12119.9 (2)
N2—N1—C6117.49 (18)C10—C11—H11120.1
C1—N1—C6130.25 (19)C12—C11—H11120.1
N1—N2—C3104.47 (18)C7—C12—C11120.3 (2)
N1—C1—C2106.61 (19)C7—C12—H12119.8
N1—C1—C4123.3 (2)C11—C12—H12119.8
C2—C1—C4130.0 (2)N3—C13—C10179.2 (3)
C1—C2—C3105.17 (19)O1—C14—H14A109.5
C1—C2—H2127.4O1—C14—H14B109.5
C3—C2—H2127.4H14A—C14—H14B109.5
N2—C3—C2111.72 (19)O1—C14—H14C109.5
N2—C3—C5118.3 (2)H14A—C14—H14C109.5
C2—C3—C5130.0 (2)H14B—C14—H14C109.5
O2—C4—O1124.4 (2)O1—C14—H14D109.5
O2—C4—C1125.6 (2)H14A—C14—H14D141.1
O1—C4—C1110.0 (2)H14B—C14—H14D56.3
O4—C5—O3123.3 (2)H14C—C14—H14D56.3
O4—C5—C3126.0 (2)O1—C14—H14E109.5
O3—C5—C3110.7 (2)H14A—C14—H14E56.3
N1—C6—C7112.00 (17)H14B—C14—H14E141.1
N1—C6—H6A109.2H14C—C14—H14E56.3
C7—C6—H6A109.2H14D—C14—H14E109.5
N1—C6—H6B109.2O1—C14—H14F109.5
C7—C6—H6B109.2H14A—C14—H14F56.3
H6A—C6—H6B107.9H14B—C14—H14F56.3
C12—C7—C8119.4 (2)H14C—C14—H14F141.1
C12—C7—C6120.5 (2)H14D—C14—H14F109.5
C8—C7—C6120.0 (2)H14E—C14—H14F109.5
C9—C8—C7120.6 (2)O3—C15—H15A109.5
C9—C8—H8119.7O3—C15—H15B109.5
C7—C8—H8119.7H15A—C15—H15B109.5
C8—C9—C10119.6 (2)O3—C15—H15C109.5
C8—C9—H9120.2H15A—C15—H15C109.5
C10—C9—H9120.2H15B—C15—H15C109.5
C11—C10—C9120.1 (2)
C1—N1—N2—C31.0 (2)C15—O3—C5—C3−175.6 (2)
C6—N1—N2—C3175.97 (16)N2—C3—C5—O4−0.4 (3)
N2—N1—C1—C2−1.3 (2)C2—C3—C5—O4179.6 (2)
C6—N1—C1—C2−175.37 (19)N2—C3—C5—O3179.86 (18)
N2—N1—C1—C4−179.11 (18)C2—C3—C5—O3−0.1 (3)
C6—N1—C1—C46.8 (3)N2—N1—C6—C7−87.3 (2)
N1—C1—C2—C30.9 (2)C1—N1—C6—C786.6 (3)
C4—C1—C2—C3178.6 (2)N1—C6—C7—C12−113.0 (2)
N1—N2—C3—C2−0.4 (2)N1—C6—C7—C867.8 (3)
N1—N2—C3—C5179.58 (17)C12—C7—C8—C90.1 (4)
C1—C2—C3—N2−0.3 (2)C6—C7—C8—C9179.2 (2)
C1—C2—C3—C5179.7 (2)C7—C8—C9—C100.1 (4)
C14—O1—C4—O2−0.4 (3)C8—C9—C10—C11−0.5 (4)
C14—O1—C4—C1179.79 (19)C8—C9—C10—C13−178.8 (2)
N1—C1—C4—O22.2 (4)C9—C10—C11—C120.7 (4)
C2—C1—C4—O2−175.2 (2)C13—C10—C11—C12179.0 (2)
N1—C1—C4—O1−177.99 (18)C8—C7—C12—C110.2 (3)
C2—C1—C4—O14.7 (3)C6—C7—C12—C11−179.0 (2)
C15—O3—C5—O44.7 (4)C10—C11—C12—C7−0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.972.382.966 (3)119
C14—H14A···O4i0.962.413.312 (4)156
C2—H2···Cg2ii0.933.043.952 (3)166

Symmetry codes: (i) x+1, y−1, z; (ii) −x+1, −y, −z.

Table 2 π-π interactions in the title compound. α is the interplanar angle, DCC is the length of the vector centroid to centroid - CC), τ is the angle subtended by the plane normal to CC. Cg1 is the centroid of the ring N1\N2\C3\C2\C1; Cg2 is the centroid of the ring C7\C8\C9\C10\C11\C12.

Ring 1Ring 2α (°)DCC (Å)τ (°)
Cg1Cg1iii0.003.5074 (16)18.75
Cg2Cg2iv0.003.9401 (15)28.26

Symmetry codes: (iii) -x, -y, -z; (iv) 1-x, -y, 1-z

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2152).

References

  • Chambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem.50, 4736–4738.
  • Dai, W., Wang, W.-X., Zhao, Y.-Y. & Zhao, H. (2008). Acta Cryst. E64, o1017. [PMC free article] [PubMed]
  • Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.
  • Lee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem.54, 428–431.
  • Radl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun.65, 1093–1108.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiao, J. & Zhao, H. (2008a). Acta Cryst. E64, o965. [PMC free article] [PubMed]
  • Xiao, J. & Zhao, H. (2008b). Acta Cryst. E64, o986. [PMC free article] [PubMed]
  • Xiao, J. & Zhao, H. (2008c). Acta Cryst. E64, o1436. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography