PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1173.
Published online 2009 April 30. doi:  10.1107/S1600536809015529
PMCID: PMC2977838

Acridinium 3,5-dicarboxy­benzoate monohydrate

Abstract

The title compound, C13H10N+·C9H5O6 ·H2O, exhibits a wide range of non-covalent inter­actions, such as O—H(...)O and N—H(...)O hydrogen bonds, π–π stacking [centroid-centroid distances = 3.562 (8) and 3.872 (8) Å] and ion pairing, connecting the various components into a supra­molecular structure.

Related literature

For background to proton transfer compounds, see: Aghabozorg et al. (2008 [triangle]); (Tabatabaee et al. 2009 [triangle]). For related structures, see: Zadykowicz, Trzybiński et al. (2009 [triangle]); Zadykowicz, Krzymiński et al. (2009 [triangle]); Trzybiński et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1173-scheme1.jpg

Experimental

Crystal data

  • C13H10N+·C9H5O6 ·H2O
  • M r = 407.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1173-efi1.jpg
  • a = 6.8554 (4) Å
  • b = 9.6930 (6) Å
  • c = 14.8916 (10) Å
  • α = 103.6870 (10)°
  • β = 101.4240 (10)°
  • γ = 103.3100 (10)°
  • V = 901.62 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 120 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.971, T max = 0.980
  • 9138 measured reflections
  • 4275 independent reflections
  • 3659 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.130
  • S = 1.01
  • 4275 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015529/pv2154sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015529/pv2154Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Acridine is structurally related to anthracene wherein one of the central CH groups is replaced by nitrogen. It is a raw material used for the production of dyes and some valuable drugs. Our research group has reported the first proton transfer complex with acridine (Tabatabaee et al., 2009). We have also reported many proton transfer compounds with various donor and acceptor fragments; further details and related literature has been presented in a review article (Aghabozorg et al., 2008). In this article, we report the crystal structure of a proton transfer system containing acridine and benzene tricarboxylic acid.

The title structure contains a cation, an anion and a water molecule in an asymmetric unit (Fig. 1). The crystal structure shows that one of the protons of carboxylic groups has been transferred to nitrogen atom of the acridine molecule. Noncovalent interactions cause the structure to form a self-assembled system. A hydrogen bonded motif involving anion and cation fragments and water molecules linked to each other into one-dimensional chains is presented in Fig. 2; details of O–H···O and N–H···O hydrogen bonds are shown in Table 1. In addition, the interactions consisting of ion-pairing, π–π stacking [with centroid-centroid distances = 3.562 (8) and 3.872 (8) Å] between two cations are also present (Fig. 3).

The crystal structures of several acridine derivatives have been reported recently (Zadykowicz, Trzybiński et al., 2009; Zadykowicz, Krzymiński et al., 2009; Trzybiński et al., 2009.

Experimental

The reaction between solution benzene tricarboxylic acid (10 mg, 1 mmol) in 10 ml water and acridine (89 mg, 2 mmol) in 10 ml me thanol in 1:2 molar ratios gave brown prism crystals after slow evaporation of the solvent at room temperature.

Refinement

All the H atoms bonded to C and N atoms were included in the refinements at idealized positions in riding motion approximation. The H atoms of the hydroxyl group and water of hydration were taken from a difference map and were not allowed to refine. The following constraints were used: Caryl—H = 0.95 and N—H = 0.98 Å, Uiso(H) = 1.5Ueq(O water) and 1.2Ueq(the rest of the parent atoms).

Figures

Fig. 1.
The molecular structure of the title compound, displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
One-dimensional chain that formed by hydrogen bonds between cationic and anionic fragments and water molecules.
Fig. 3.
π–π Stacking interactions between cationic fragments in the title compound.

Crystal data

C13H10N+·C9H5O6·H2OZ = 2
Mr = 407.37F(000) = 424
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8554 (4) ÅCell parameters from 5147 reflections
b = 9.6930 (6) Åθ = 2.3–30.0°
c = 14.8916 (10) ŵ = 0.11 mm1
α = 103.687 (1)°T = 120 K
β = 101.424 (1)°Prism, brown
γ = 103.310 (1)°0.25 × 0.20 × 0.15 mm
V = 901.62 (10) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer4275 independent reflections
Radiation source: fine-focus sealed tube3659 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −9→9
Tmin = 0.971, Tmax = 0.980k = −12→12
9138 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.130H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.08P)2 + 0.36P] where P = (Fo2 + 2Fc2)/3
4275 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.53402 (13)0.57945 (10)0.27673 (6)0.0210 (2)
O20.84684 (14)0.54218 (10)0.30488 (6)0.0236 (2)
O30.76596 (15)0.03275 (10)−0.06853 (6)0.0239 (2)
H3O0.8501−0.0268−0.07660.029*
O40.96967 (16)0.12545 (11)0.08194 (7)0.0283 (2)
O50.07764 (15)0.36662 (11)−0.05679 (7)0.0247 (2)
H5O−0.02070.3674−0.10610.030*
O60.16639 (16)0.20983 (12)−0.16763 (7)0.0287 (2)
O70.16191 (15)0.62966 (12)0.21813 (7)0.0295 (2)
H7B0.27510.60540.23750.044*
H7C0.07650.59580.24990.044*
N10.68310 (16)0.81261 (11)0.43083 (7)0.0179 (2)
H1N0.64310.73520.37940.022*
C10.8239 (2)0.88639 (15)0.69373 (9)0.0240 (3)
H1A0.86690.96680.75100.029*
C20.7957 (2)0.74436 (16)0.69839 (9)0.0253 (3)
H2A0.81340.72620.75900.030*
C30.7401 (2)0.62373 (15)0.61357 (10)0.0241 (3)
H3A0.72530.52610.61840.029*
C40.70732 (19)0.64520 (14)0.52498 (9)0.0211 (3)
H4A0.67290.56370.46880.025*
C4A0.72531 (18)0.79041 (13)0.51809 (9)0.0181 (2)
C50.6491 (2)0.96360 (15)0.32571 (9)0.0225 (3)
H5A0.60040.87840.27110.027*
C60.6712 (2)1.10214 (16)0.31508 (10)0.0264 (3)
H6A0.63691.11250.25250.032*
C70.7447 (2)1.23140 (15)0.39604 (11)0.0266 (3)
H7A0.76071.32670.38690.032*
C80.7923 (2)1.21908 (14)0.48666 (10)0.0246 (3)
H8A0.84081.30580.54020.029*
C8A0.76947 (18)1.07638 (13)0.50154 (9)0.0197 (3)
C90.81271 (19)1.05643 (14)0.59263 (9)0.0214 (3)
H9A0.85871.14020.64810.026*
C9A0.78877 (18)0.91388 (14)0.60267 (9)0.0197 (3)
C10A0.69968 (19)0.94890 (14)0.41914 (9)0.0188 (2)
C100.60515 (18)0.40594 (13)0.15426 (8)0.0175 (2)
C110.73036 (19)0.31547 (13)0.13153 (9)0.0186 (2)
H11A0.85050.32200.17870.022*
C120.68132 (19)0.21555 (13)0.04031 (9)0.0180 (2)
C130.50674 (19)0.20648 (13)−0.02982 (9)0.0185 (2)
H13A0.47460.1400−0.09250.022*
C140.37953 (18)0.29568 (13)−0.00735 (8)0.0179 (2)
C150.42717 (18)0.39407 (13)0.08446 (9)0.0180 (2)
H15A0.33850.45320.09960.022*
C160.66843 (19)0.51724 (13)0.25273 (8)0.0182 (2)
C170.8191 (2)0.12108 (14)0.01994 (9)0.0197 (2)
C180.19722 (19)0.28509 (14)−0.08559 (9)0.0197 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0199 (4)0.0232 (4)0.0190 (4)0.0101 (3)0.0046 (3)0.0011 (3)
O20.0210 (4)0.0291 (5)0.0181 (4)0.0119 (4)0.0008 (3)0.0015 (4)
O30.0269 (5)0.0273 (5)0.0181 (4)0.0167 (4)0.0040 (4)0.0010 (4)
O40.0307 (5)0.0337 (5)0.0201 (5)0.0215 (4)0.0013 (4)0.0003 (4)
O50.0235 (5)0.0319 (5)0.0203 (4)0.0166 (4)0.0029 (4)0.0047 (4)
O60.0282 (5)0.0354 (5)0.0193 (5)0.0166 (4)0.0011 (4)−0.0005 (4)
O70.0228 (5)0.0415 (6)0.0279 (5)0.0168 (4)0.0044 (4)0.0119 (4)
N10.0181 (5)0.0184 (5)0.0162 (5)0.0060 (4)0.0052 (4)0.0019 (4)
C10.0213 (6)0.0289 (6)0.0169 (6)0.0050 (5)0.0031 (5)0.0019 (5)
C20.0211 (6)0.0337 (7)0.0192 (6)0.0067 (5)0.0030 (5)0.0080 (5)
C30.0214 (6)0.0248 (6)0.0252 (6)0.0060 (5)0.0040 (5)0.0083 (5)
C40.0197 (6)0.0205 (6)0.0204 (6)0.0048 (4)0.0042 (5)0.0029 (5)
C4A0.0138 (5)0.0211 (6)0.0180 (6)0.0046 (4)0.0047 (4)0.0034 (4)
C50.0237 (6)0.0256 (6)0.0202 (6)0.0102 (5)0.0080 (5)0.0059 (5)
C60.0262 (7)0.0314 (7)0.0287 (7)0.0137 (5)0.0109 (5)0.0142 (6)
C70.0233 (6)0.0223 (6)0.0388 (8)0.0098 (5)0.0121 (6)0.0114 (6)
C80.0209 (6)0.0197 (6)0.0324 (7)0.0076 (5)0.0079 (5)0.0041 (5)
C8A0.0147 (5)0.0193 (6)0.0242 (6)0.0061 (4)0.0065 (4)0.0028 (5)
C90.0187 (6)0.0203 (6)0.0205 (6)0.0047 (4)0.0047 (5)−0.0012 (5)
C9A0.0162 (6)0.0217 (6)0.0186 (6)0.0042 (4)0.0049 (4)0.0022 (5)
C10A0.0166 (5)0.0207 (6)0.0200 (6)0.0070 (4)0.0068 (4)0.0048 (5)
C100.0188 (6)0.0189 (5)0.0160 (5)0.0079 (4)0.0049 (4)0.0045 (4)
C110.0191 (6)0.0195 (6)0.0175 (5)0.0086 (4)0.0037 (4)0.0042 (4)
C120.0197 (6)0.0185 (5)0.0182 (6)0.0096 (4)0.0065 (4)0.0050 (4)
C130.0205 (6)0.0195 (5)0.0162 (5)0.0085 (4)0.0051 (4)0.0036 (4)
C140.0187 (5)0.0196 (6)0.0165 (5)0.0082 (4)0.0047 (4)0.0049 (4)
C150.0180 (6)0.0189 (5)0.0177 (5)0.0076 (4)0.0054 (4)0.0040 (4)
C160.0201 (6)0.0198 (5)0.0170 (5)0.0086 (4)0.0055 (4)0.0062 (4)
C170.0222 (6)0.0202 (6)0.0181 (6)0.0103 (5)0.0054 (5)0.0040 (4)
C180.0191 (6)0.0207 (6)0.0199 (6)0.0085 (4)0.0045 (4)0.0053 (4)

Geometric parameters (Å, °)

O1—C161.2747 (15)C5—C10A1.4148 (17)
O2—C161.2474 (15)C5—H5A0.9500
O3—C171.3167 (15)C6—C71.425 (2)
O3—H3O0.9102C6—H6A0.9500
O4—C171.2261 (16)C7—C81.364 (2)
O5—C181.3258 (15)C7—H7A0.9500
O5—H5O0.8953C8—C8A1.4303 (18)
O6—C181.2143 (16)C8—H8A0.9500
O7—H7B0.8764C8A—C91.3988 (18)
O7—H7C0.8773C8A—C10A1.4280 (17)
N1—C4A1.3529 (16)C9—C9A1.4006 (18)
N1—C10A1.3550 (16)C9—H9A0.9500
N1—H1N0.8800C10—C111.3934 (16)
C1—C21.366 (2)C10—C151.3995 (17)
C1—C9A1.4280 (18)C10—C161.5120 (16)
C1—H1A0.9500C11—C121.3938 (16)
C2—C31.4188 (19)C11—H11A0.9500
C2—H2A0.9500C12—C131.3942 (17)
C3—C41.3668 (18)C12—C171.4844 (16)
C3—H3A0.9500C13—C141.3950 (16)
C4—C4A1.4144 (17)C13—H13A0.9500
C4—H4A0.9500C14—C151.3957 (17)
C4A—C9A1.4275 (17)C14—C181.4958 (17)
C5—C61.3667 (19)C15—H15A0.9500
C17—O3—H3O111.8C8A—C9—C9A120.49 (11)
C18—O5—H5O111.9C8A—C9—H9A119.8
H7B—O7—H7C105.4C9A—C9—H9A119.8
C4A—N1—C10A122.85 (11)C9—C9A—C4A118.55 (11)
C4A—N1—H1N118.6C9—C9A—C1122.95 (12)
C10A—N1—H1N118.6C4A—C9A—C1118.50 (12)
C2—C1—C9A119.94 (12)N1—C10A—C5119.81 (11)
C2—C1—H1A120.0N1—C10A—C8A119.46 (11)
C9A—C1—H1A120.0C5—C10A—C8A120.73 (12)
C1—C2—C3120.64 (12)C11—C10—C15119.08 (11)
C1—C2—H2A119.7C11—C10—C16119.12 (10)
C3—C2—H2A119.7C15—C10—C16121.77 (11)
C4—C3—C2121.31 (12)C10—C11—C12120.76 (11)
C4—C3—H3A119.3C10—C11—H11A119.6
C2—C3—H3A119.3C12—C11—H11A119.6
C3—C4—C4A119.08 (12)C13—C12—C11120.05 (11)
C3—C4—H4A120.5C13—C12—C17121.31 (11)
C4A—C4—H4A120.5C11—C12—C17118.63 (11)
N1—C4A—C4119.84 (11)C12—C13—C14119.52 (11)
N1—C4A—C9A119.77 (11)C12—C13—H13A120.2
C4—C4A—C9A120.39 (11)C14—C13—H13A120.2
C6—C5—C10A119.08 (12)C13—C14—C15120.32 (11)
C6—C5—H5A120.5C13—C14—C18117.62 (11)
C10A—C5—H5A120.5C15—C14—C18122.02 (11)
C5—C6—C7121.30 (13)C14—C15—C10120.23 (11)
C5—C6—H6A119.3C14—C15—H15A119.9
C7—C6—H6A119.3C10—C15—H15A119.9
C8—C7—C6120.37 (12)O2—C16—O1124.40 (11)
C8—C7—H7A119.8O2—C16—C10118.44 (11)
C6—C7—H7A119.8O1—C16—C10117.17 (10)
C7—C8—C8A120.42 (12)O4—C17—O3123.27 (11)
C7—C8—H8A119.8O4—C17—C12121.71 (11)
C8A—C8—H8A119.8O3—C17—C12115.01 (10)
C9—C8A—C10A118.83 (11)O6—C18—O5124.18 (11)
C9—C8A—C8123.08 (12)O6—C18—C14122.11 (11)
C10A—C8A—C8118.09 (12)O5—C18—C14113.70 (11)
C9A—C1—C2—C32.7 (2)C8—C8A—C10A—N1177.85 (10)
C1—C2—C3—C4−1.9 (2)C9—C8A—C10A—C5178.37 (11)
C2—C3—C4—C4A−1.30 (19)C8—C8A—C10A—C5−1.77 (18)
C10A—N1—C4A—C4−179.17 (11)C15—C10—C11—C120.76 (18)
C10A—N1—C4A—C9A0.52 (18)C16—C10—C11—C12−177.54 (11)
C3—C4—C4A—N1−176.65 (11)C10—C11—C12—C130.80 (19)
C3—C4—C4A—C9A3.66 (18)C10—C11—C12—C17−179.65 (11)
C10A—C5—C6—C70.2 (2)C11—C12—C13—C14−1.38 (18)
C5—C6—C7—C8−0.9 (2)C17—C12—C13—C14179.08 (11)
C6—C7—C8—C8A0.2 (2)C12—C13—C14—C150.41 (18)
C7—C8—C8A—C9−179.04 (12)C12—C13—C14—C18178.41 (11)
C7—C8—C8A—C10A1.11 (18)C13—C14—C15—C101.15 (18)
C10A—C8A—C9—C9A0.28 (18)C18—C14—C15—C10−176.75 (11)
C8—C8A—C9—C9A−179.57 (11)C11—C10—C15—C14−1.73 (18)
C8A—C9—C9A—C4A1.79 (18)C16—C10—C15—C14176.53 (11)
C8A—C9—C9A—C1−177.87 (11)C11—C10—C16—O211.75 (17)
N1—C4A—C9A—C9−2.23 (17)C15—C10—C16—O2−166.50 (11)
C4—C4A—C9A—C9177.46 (11)C11—C10—C16—O1−168.22 (11)
N1—C4A—C9A—C1177.44 (11)C15—C10—C16—O113.52 (17)
C4—C4A—C9A—C1−2.87 (18)C13—C12—C17—O4−177.96 (12)
C2—C1—C9A—C9179.34 (12)C11—C12—C17—O42.49 (19)
C2—C1—C9A—C4A−0.32 (19)C13—C12—C17—O31.45 (17)
C4A—N1—C10A—C5−178.76 (11)C11—C12—C17—O3−178.10 (11)
C4A—N1—C10A—C8A1.62 (18)C13—C14—C18—O6−4.89 (18)
C6—C5—C10A—N1−178.51 (11)C15—C14—C18—O6173.07 (12)
C6—C5—C10A—C8A1.10 (19)C13—C14—C18—O5176.13 (11)
C9—C8A—C10A—N1−2.01 (17)C15—C14—C18—O5−5.91 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.881.762.6403 (14)174
O3—H3O···O4i0.911.732.6370 (15)174
O5—H5O···O7ii0.901.772.6412 (14)165
O7—H7B···O10.881.852.7197 (14)172
O7—H7C···O2iii0.881.942.7989 (15)167

Symmetry codes: (i) −x+2, −y, −z; (ii) −x, −y+1, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2154).

References

  • Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc 5, 184–227.
  • Bruker (1998). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474. [PMC free article] [PubMed]
  • Trzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770–o771. [PMC free article] [PubMed]
  • Zadykowicz, B., Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o768–o769. [PMC free article] [PubMed]
  • Zadykowicz, B., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o566–o567. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography