PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1163–o1164.
Published online 2009 April 30. doi:  10.1107/S1600536809015293
PMCID: PMC2977829

13-Hydr­oxy-4,16-dimethyl-4,16-diaza­penta­cyclo­[12.3.1.01,5.05,13.07,12]octa­deca-7(12),8,10-triene-6,18-dione

Abstract

In the title compound, C18H20N2O3, the N-methyl­piperidone ring adopts a chair conformation. The pyrrolidine ring and the five-membered cyclo­pentane rings adopt envelope conformations. The five-membered ring of the ninhydrin system adopts an envelope conformation with the central C atom deviating by 0.217 (1)Å from the mean plane through the other atoms. The mol­ecular packing is characterized by inter­molecular C—H(...)O and intra­molecular C—H(...)O and O—H(...)N inter­actions.

Related literature

For the cytotoxic and anti­cancer properties of piperidinones, see: Dimmock et al. (1990 [triangle], 2001 [triangle]). Piperidinone derivatives have attracted attention due to their predicted mode of inter­action with cellular thiols, having little or no affinity for the hydr­oxy and amino groups found in nucleic acids, see: Baluja et al. (1964 [triangle]); Mutus et al. (1989 [triangle]). Ninhydrin is used to monitor deprotection in solid phase peptide synthesis (Kaiser et al., 1970 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1163-scheme1.jpg

Experimental

Crystal data

  • C18H20N2O3
  • M r = 312.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1163-efi1.jpg
  • a = 11.0862 (5) Å
  • b = 11.6152 (5) Å
  • c = 12.5670 (6) Å
  • β = 102.851 (9)°
  • V = 1577.70 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.18 × 0.13 × 0.11 mm

Data collection

  • Nonius MACH-3 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.984, T max = 0.990
  • 3226 measured reflections
  • 2764 independent reflections
  • 1978 reflections with I > 2σ(I)
  • R int = 0.046
  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.120
  • S = 1.04
  • 2764 reflections
  • 211 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015293/at2770sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015293/at2770Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and SG thank the Management of The Madura College, Madurai, for their constant support.

supplementary crystallographic information

Comment

Piperidinones belong to an important class of heterocycles which are found to possess a variety of biological activities, including cytotoxic and anticancer properties (Dimmock et al., 1990, 2001). Derivatives of piperidinones have also attracted wide attention from chemists and biologists due to their predicted mode of interaction with cellular thiols, having little or no affinity for the hydroxy and amino groups found in nucleic acids (Baluja et al., 1964; Mutus et al., 1989). Ninhydrin is used to monitor deprotection in solid phase peptide synthesis (Kaiser et al., 1970).

The molecular structure of the title compound is shown in Fig.1. The n-methyl piperidone ring adopts a chair conformation [Q=0.6668 (19) Å, θ= 13.62 (16)°, Φ= 152.0 (7)°; Cremer and Pople, 1975]. The pyrrolidine ring A(N2—C16) and the five membered cyclopentane ring B(C1—C4) adopt envelope conformations [puckering parameters Q=0.327 (2) Å, Φ=178.8 (4)° and Q=0.483 (2) Å, Φ=162.3 (2)° respectively, Cremer and Pople, 1975]. In the ninhydrin system, in the five membered ring the flap atom C7 deviate from the mean plane formed by other atoms C6/C8/C9/C10/C11/C12/C13/C14 by 0.217 (1)Å adopting an envelope conformation. The sum of the angle at the atom N2 is 338.17 (2)° is in accordance with sp3 hybridization.

Fig. 2 shows the packing viewed down the c—axis. The molecular interaction through C—H···O (Table 1) hydrogen bonds, generating a graph set motif of C11(7) along the b—axis, stabilize the crystal structure. There are neither a marked C—H···π nor π···π interactions in the structure.

Experimental

A mixture of 1-methyl-4-piperidinone 0.200 g (0.002 mol), ninhydrin 0.315 g (0.002 mol) and sarcosine 0.156 g (0.002 mol) in methanol (30 ml) were refluxed in a water bath for 10 h. After completion of the reaction as monitored by TLC, the excess solvent was removed under vacuum and the residue subjected to flash column chromatography using petroleum ether:ethyl acetate mixture (8:2 v/v) as eluent to obtain crystals of title compound in 8% yield along with a other product. Yield: 8%, melting point: 435–436 K.

Refinement

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.987 and Å, O—H = 0.82 Å. Uiso = 1.2Ueq(C) for CH, CH2 groups and Uiso = 1.5Ueq(C,O) for OH and CH3 groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Packing diagram viewed down the c axis.

Crystal data

C18H20N2O3F(000) = 664
Mr = 312.36Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.0862 (5) Åθ = 2–25°
b = 11.6152 (5) ŵ = 0.09 mm1
c = 12.5670 (6) ÅT = 293 K
β = 102.851 (9)°Needle, colourless
V = 1577.70 (12) Å30.18 × 0.13 × 0.11 mm
Z = 4

Data collection

Nonius MACH-3 diffractometer1978 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
graphiteθmax = 25.0°, θmin = 2.2°
ω–2θ scansh = 0→13
Absorption correction: ψ scan (North et al., 1968)k = −1→13
Tmin = 0.984, Tmax = 0.990l = −14→14
3226 measured reflections2 standard reflections every 60 min
2764 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0616P)2 + 0.2971P] where P = (Fo2 + 2Fc2)/3
2764 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.37990 (16)0.05350 (16)0.64487 (16)0.0558 (5)
C20.25684 (15)0.03912 (14)0.56351 (16)0.0496 (4)
C30.15940 (16)0.06258 (15)0.63055 (15)0.0517 (4)
H3A0.07720.04600.58740.062*
H3B0.17440.01430.69510.062*
C40.39217 (16)0.18110 (16)0.66421 (15)0.0537 (5)
H40.47500.20260.70510.064*
C50.29116 (17)0.21625 (17)0.72388 (14)0.0554 (5)
H5A0.30670.17960.79500.067*
H5B0.29350.29890.73490.067*
C60.36690 (14)0.22296 (15)0.54459 (15)0.0471 (4)
C70.26099 (14)0.14067 (15)0.48444 (13)0.0461 (4)
C80.14614 (15)0.21810 (16)0.45590 (13)0.0471 (4)
C90.18837 (16)0.33902 (15)0.47548 (14)0.0475 (4)
C100.31366 (16)0.34242 (15)0.52472 (14)0.0472 (4)
C110.37277 (19)0.44677 (16)0.54870 (16)0.0595 (5)
H110.45640.44980.58240.071*
C120.3053 (2)0.54695 (17)0.52175 (17)0.0680 (6)
H120.34450.61780.53630.082*
C130.1808 (2)0.54309 (18)0.47352 (17)0.0688 (6)
H130.13690.61140.45700.083*
C140.12088 (19)0.43966 (18)0.44954 (16)0.0602 (5)
H140.03700.43720.41670.072*
C150.24197 (18)−0.07110 (18)0.49582 (19)0.0671 (6)
H15A0.3119−0.12220.52030.080*
H15B0.1667−0.11130.50060.080*
C160.2361 (2)−0.0302 (2)0.3805 (2)0.0798 (7)
H16A0.2811−0.08240.34310.096*
H16B0.1509−0.02600.33970.096*
C170.2705 (2)0.1496 (2)0.28884 (17)0.0845 (7)
H17A0.18300.15630.26020.127*
H17B0.30750.11030.23690.127*
H17C0.30610.22490.30250.127*
C180.06767 (19)0.2233 (2)0.70672 (18)0.0693 (6)
H18A−0.00890.21230.65440.104*
H18B0.07870.30360.72400.104*
H18C0.06600.18080.77190.104*
N10.16914 (13)0.18280 (12)0.66132 (11)0.0479 (4)
N20.29314 (14)0.08429 (15)0.39070 (13)0.0603 (4)
O10.04209 (10)0.18577 (12)0.41422 (11)0.0618 (4)
O20.47670 (10)0.20956 (13)0.50608 (13)0.0650 (4)
H20.46730.15780.46060.098*
O30.45072 (13)−0.02185 (13)0.68415 (14)0.0810 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0474 (10)0.0498 (11)0.0671 (12)0.0042 (8)0.0059 (9)0.0104 (9)
C20.0446 (9)0.0392 (9)0.0636 (11)−0.0012 (7)0.0093 (8)−0.0055 (8)
C30.0506 (10)0.0463 (10)0.0576 (11)−0.0046 (8)0.0110 (8)0.0019 (8)
C40.0431 (9)0.0535 (11)0.0569 (11)−0.0048 (8)−0.0055 (8)0.0016 (9)
C50.0653 (11)0.0536 (11)0.0430 (9)−0.0058 (9)0.0026 (8)0.0004 (8)
C60.0342 (8)0.0477 (10)0.0585 (10)−0.0011 (7)0.0082 (7)0.0006 (8)
C70.0390 (9)0.0495 (10)0.0493 (10)−0.0009 (7)0.0089 (7)−0.0065 (8)
C80.0395 (9)0.0594 (11)0.0416 (9)0.0023 (8)0.0073 (7)0.0001 (8)
C90.0505 (10)0.0509 (10)0.0434 (9)0.0056 (8)0.0150 (7)0.0053 (8)
C100.0504 (10)0.0472 (10)0.0463 (9)−0.0013 (8)0.0155 (8)0.0038 (8)
C110.0648 (12)0.0516 (12)0.0635 (12)−0.0107 (9)0.0171 (9)0.0023 (9)
C120.0982 (17)0.0463 (12)0.0655 (13)−0.0053 (11)0.0311 (12)0.0055 (10)
C130.0958 (17)0.0522 (13)0.0640 (13)0.0185 (11)0.0300 (12)0.0143 (10)
C140.0639 (12)0.0639 (13)0.0544 (11)0.0184 (10)0.0168 (9)0.0104 (9)
C150.0553 (11)0.0494 (11)0.0965 (16)−0.0015 (9)0.0170 (11)−0.0161 (11)
C160.0767 (15)0.0750 (16)0.0899 (17)−0.0090 (11)0.0229 (12)−0.0364 (13)
C170.0865 (16)0.117 (2)0.0548 (13)0.0058 (14)0.0251 (11)−0.0107 (13)
C180.0730 (13)0.0697 (14)0.0681 (13)0.0075 (11)0.0222 (10)−0.0097 (11)
N10.0508 (8)0.0466 (8)0.0461 (8)−0.0003 (6)0.0105 (6)−0.0013 (6)
N20.0567 (9)0.0692 (11)0.0584 (10)0.0002 (8)0.0201 (7)−0.0161 (8)
O10.0403 (7)0.0767 (10)0.0626 (8)−0.0001 (6)−0.0011 (6)−0.0024 (7)
O20.0405 (7)0.0683 (10)0.0891 (11)−0.0026 (6)0.0207 (6)−0.0079 (8)
O30.0642 (9)0.0617 (9)0.1068 (13)0.0116 (7)−0.0029 (8)0.0202 (8)

Geometric parameters (Å, °)

C1—O31.206 (2)C10—C111.379 (3)
C1—C41.503 (3)C11—C121.384 (3)
C1—C21.521 (2)C11—H110.9300
C2—C151.526 (3)C12—C131.379 (3)
C2—C31.535 (3)C12—H120.9300
C2—C71.549 (3)C13—C141.374 (3)
C3—N11.446 (2)C13—H130.9300
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.513 (3)
C4—C51.535 (3)C15—H15A0.9700
C4—C61.545 (3)C15—H15B0.9700
C4—H40.9800C16—N21.466 (3)
C5—N11.458 (2)C16—H16A0.9700
C5—H5A0.9700C16—H16B0.9700
C5—H5B0.9700C17—N21.461 (3)
C6—O21.415 (2)C17—H17A0.9600
C6—C101.507 (2)C17—H17B0.9600
C6—C71.571 (2)C17—H17C0.9600
C7—N21.460 (2)C18—N11.448 (2)
C7—C81.535 (2)C18—H18A0.9600
C8—O11.2154 (19)C18—H18B0.9600
C8—C91.484 (3)C18—H18C0.9600
C9—C141.387 (3)O2—H20.8200
C9—C101.390 (2)
O3—C1—C4128.48 (17)C11—C10—C6128.58 (16)
O3—C1—C2126.90 (18)C9—C10—C6111.31 (14)
C4—C1—C2104.62 (14)C10—C11—C12118.75 (19)
C1—C2—C15115.87 (15)C10—C11—H11120.6
C1—C2—C3104.30 (15)C12—C11—H11120.6
C15—C2—C3116.94 (15)C13—C12—C11120.90 (19)
C1—C2—C7101.38 (13)C13—C12—H12119.6
C15—C2—C7107.23 (16)C11—C12—H12119.6
C3—C2—C7109.99 (14)C14—C13—C12120.86 (19)
N1—C3—C2107.36 (14)C14—C13—H13119.6
N1—C3—H3A110.2C12—C13—H13119.6
C2—C3—H3A110.2C13—C14—C9118.43 (19)
N1—C3—H3B110.2C13—C14—H14120.8
C2—C3—H3B110.2C9—C14—H14120.8
H3A—C3—H3B108.5C16—C15—C2104.31 (17)
C1—C4—C5106.95 (15)C16—C15—H15A110.9
C1—C4—C699.36 (15)C2—C15—H15A110.9
C5—C4—C6113.42 (14)C16—C15—H15B110.9
C1—C4—H4112.1C2—C15—H15B110.9
C5—C4—H4112.1H15A—C15—H15B108.9
C6—C4—H4112.1N2—C16—C15105.95 (17)
N1—C5—C4110.85 (14)N2—C16—H16A110.5
N1—C5—H5A109.5C15—C16—H16A110.5
C4—C5—H5A109.5N2—C16—H16B110.5
N1—C5—H5B109.5C15—C16—H16B110.5
C4—C5—H5B109.5H16A—C16—H16B108.7
H5A—C5—H5B108.1N2—C17—H17A109.5
O2—C6—C10112.31 (14)N2—C17—H17B109.5
O2—C6—C4108.33 (14)H17A—C17—H17B109.5
C10—C6—C4115.51 (15)N2—C17—H17C109.5
O2—C6—C7112.10 (14)H17A—C17—H17C109.5
C10—C6—C7104.91 (13)H17B—C17—H17C109.5
C4—C6—C7103.35 (13)N1—C18—H18A109.5
N2—C7—C8114.40 (14)N1—C18—H18B109.5
N2—C7—C2102.91 (14)H18A—C18—H18B109.5
C8—C7—C2117.03 (14)N1—C18—H18C109.5
N2—C7—C6111.76 (13)H18A—C18—H18C109.5
C8—C7—C6104.37 (14)H18B—C18—H18C109.5
C2—C7—C6106.28 (13)C3—N1—C18113.60 (15)
O1—C8—C9126.74 (16)C3—N1—C5113.99 (14)
O1—C8—C7125.32 (17)C18—N1—C5114.19 (15)
C9—C8—C7107.53 (13)C7—N2—C17116.69 (17)
C14—C9—C10120.94 (17)C7—N2—C16107.45 (16)
C14—C9—C8128.68 (16)C17—N2—C16114.03 (18)
C10—C9—C8110.36 (14)C6—O2—H2109.5
C11—C10—C9120.10 (17)
O3—C1—C2—C15−22.8 (3)C6—C7—C8—O1−175.36 (16)
C4—C1—C2—C15157.13 (17)N2—C7—C8—C9−110.88 (16)
O3—C1—C2—C3107.2 (2)C2—C7—C8—C9128.67 (15)
C4—C1—C2—C3−72.83 (18)C6—C7—C8—C911.57 (17)
O3—C1—C2—C7−138.5 (2)O1—C8—C9—C14−1.2 (3)
C4—C1—C2—C741.44 (18)C7—C8—C9—C14171.71 (17)
C1—C2—C3—N166.97 (17)O1—C8—C9—C10−179.96 (17)
C15—C2—C3—N1−163.63 (15)C7—C8—C9—C10−7.01 (19)
C7—C2—C3—N1−41.05 (18)C14—C9—C10—C110.1 (3)
O3—C1—C4—C5−112.9 (2)C8—C9—C10—C11178.94 (16)
C2—C1—C4—C567.20 (18)C14—C9—C10—C6−179.82 (16)
O3—C1—C4—C6129.0 (2)C8—C9—C10—C6−1.0 (2)
C2—C1—C4—C6−50.92 (17)O2—C6—C10—C11−49.6 (2)
C1—C4—C5—N1−56.50 (19)C4—C6—C10—C1175.3 (2)
C6—C4—C5—N152.0 (2)C7—C6—C10—C11−171.64 (18)
C1—C4—C6—O2−80.09 (16)O2—C6—C10—C9130.29 (15)
C5—C4—C6—O2166.74 (14)C4—C6—C10—C9−104.79 (17)
C1—C4—C6—C10152.95 (14)C7—C6—C10—C98.28 (18)
C5—C4—C6—C1039.8 (2)C9—C10—C11—C12−0.7 (3)
C1—C4—C6—C738.98 (16)C6—C10—C11—C12179.21 (17)
C5—C4—C6—C7−74.19 (17)C10—C11—C12—C131.1 (3)
C1—C2—C7—N2102.34 (15)C11—C12—C13—C14−0.9 (3)
C15—C2—C7—N2−19.57 (17)C12—C13—C14—C90.3 (3)
C3—C2—C7—N2−147.71 (14)C10—C9—C14—C130.1 (3)
C1—C2—C7—C8−131.31 (15)C8—C9—C14—C13−178.51 (17)
C15—C2—C7—C8106.79 (17)C1—C2—C15—C16−113.14 (18)
C3—C2—C7—C8−21.4 (2)C3—C2—C15—C16123.18 (18)
C1—C2—C7—C6−15.26 (17)C7—C2—C15—C16−0.81 (19)
C15—C2—C7—C6−137.16 (14)C2—C15—C16—N221.1 (2)
C3—C2—C7—C694.70 (15)C2—C3—N1—C18168.67 (15)
O2—C6—C7—N2−9.8 (2)C2—C3—N1—C5−58.18 (19)
C10—C6—C7—N2112.33 (16)C4—C5—N1—C353.1 (2)
C4—C6—C7—N2−126.26 (15)C4—C5—N1—C18−174.04 (16)
O2—C6—C7—C8−133.98 (15)C8—C7—N2—C1735.0 (2)
C10—C6—C7—C8−11.83 (17)C2—C7—N2—C17163.01 (16)
C4—C6—C7—C8109.58 (15)C6—C7—N2—C17−83.3 (2)
O2—C6—C7—C2101.72 (16)C8—C7—N2—C16−94.49 (19)
C10—C6—C7—C2−136.13 (14)C2—C7—N2—C1633.53 (18)
C4—C6—C7—C2−14.72 (16)C6—C7—N2—C16147.18 (16)
N2—C7—C8—O162.2 (2)C15—C16—N2—C7−35.3 (2)
C2—C7—C8—O1−58.3 (2)C15—C16—N2—C17−166.26 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N20.822.122.655 (2)123
C15—H15A···O30.972.562.974 (3)106
C18—H18B···O3i0.962.393.288 (3)155

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2770).

References

  • Baluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053–2054.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dimmock, J. R., Arora, V. K., Wonko, S. L., Hamon, N. W., Quail, J. W., Jia, Z., Warrington, R. C., Fang, W. D. & Lee, J. S. (1990). Drug. Des. Deliv.6, 183–194. [PubMed]
  • Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem.44, 586–593. [PubMed]
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  • Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem.34, 595–598. [PubMed]
  • Mutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem.177, 237–243. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography