PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1156.
Published online 2009 April 30. doi:  10.1107/S1600536809015104
PMCID: PMC2977822

3-(6-Benz­yloxy-2,2-dimethyl­perhydro­furo[2,3-d][1,3]dioxol-5-yl)-5-(4-bromo­phen­yl)-2-phenyl­perhydro­pyrrolo[3,4-d]isoxazole-4,6-dione

Abstract

In the title compound, C31H29BrN2O7, the isoxazolidine ring adopts a twist conformation, while the tetrahydrofuran, dioxolone and pyrrole rings adopt envelope conformations. The structure is stabilized by inter­molecular C—H(...)O hydrogen bonds and C—H(...)π inter­actions.

Related literature

For general background to isoxazolidines, see: Ali et al. (1988 [triangle]); Goti et al. (1997 [triangle]); Kumar et al. (2003 [triangle]); Huisgen (1984 [triangle]). For ring puckering parameters see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1156-scheme1.jpg

Experimental

Crystal data

  • C31H29BrN2O7
  • M r = 621.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1156-efi2.jpg
  • a = 15.0680 (12) Å
  • b = 6.6801 (5) Å
  • c = 15.8550 (12) Å
  • β = 117.578 (2)°
  • V = 1414.57 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.51 mm−1
  • T = 293 K
  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker 2004 [triangle]) T min = 0.734, T max = 0.740
  • 20450 measured reflections
  • 9003 independent reflections
  • 5502 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.138
  • S = 1.00
  • 9003 reflections
  • 372 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.38 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3886 Friedel pairs
  • Flack parameter: −0.001 (8)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015104/bt2932sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015104/bt2932Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MNM and ASP thank Dr J. Jothi Kumar, The Principal, Presidency College (Autonomous), Chennai, India, for providing the computer and internet facilities. The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data.

supplementary crystallographic information

Comment

Isoxazolidines are potential precursors for biologically important compounds such as amino sugars (Ali et al., 1988), alkaloids (Goti et al., 1997), and exhibit antibacterial and antifungal activities (Kumar et al., 2003). The stereochemistry, such as regioselectivity and enantioselectivity, of heterocyclic isoxazole compounds (Huisgen, 1984) can be studied by 1,3-dipolar cycloaddition reactions. In view of these important properties, the crystal structure of the title compound, (I), has been determined.

A perspective view of compound (I) with the atom-numbering scheme is shown in Fig. 1. The dihedral angle between the phenyl rings C1—C6 and C20—C25, and, C20—C25 and C26—C31, C1—C6 and C26—C31 are 62.4 (1), 75.9 (1) and 42.1 (1)°, respectively.

The five membered isoxazolidine ring (C9-C1,O3,N2) adopts a twisted conformation On O3 and N2 with a pseudo-twofold axis passing through C11-C9 bond. The other five membered tetrahydrofuran, dioxolone and pyrrole rings adopt envelope conformation on C12, O6 and C8 respectively. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983) as follows: for the isoxazolidine ring q2 = 0.353 (1) Å, [var phi] = 26.0 (1)°, ΔS(N2) is 9.6 (1)° and Δ2(C9) is 7.4 (1)°, for the tetrahydrofuran ring q2 = 0.395 (1) Å, [var phi] = 313.0 (1)°, ΔS(C12) is 6.6 (1)° and Δ2(C15) is 11.2 (1)°, for the dioxolone ring q2 = 0.232 (1) Å, [var phi] = 295.8 (1)°, ΔS(O6) is 5.3 (1)° and Δ2(C15) is 6.2 (1)° and for the pyrrole ring q2 = 0.085 (1) Å, [var phi] = 140.0 (1)°, ΔS(C8) is 0.2 (1)° and Δ2(C7) is 4.5 (1)°.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1; Fig. 2). The crystal structure is further stabilized by C—H···π interactions involing rings C17—H17B···Cg1 and C21—H21···Cg2 (Cg1 and Cg2 denote the centroid of the C1—C6 and C20—C25 phenyl rings).

Experimental

A mixture of D-glucose derived nitrone (0.5 mmol) and maleimide (0.5 mmol) was refluxed in dry toluene (10 ml) until completion of the reaction as evidenced by TLC analysis. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Merck, 100–200 mesh, ethylacetate-petroleum ether (1:9). Single crystals of the title compound suitable for X-ray diffraction were obtained by recrystallization from ethanol.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Partial packing view, showing the C—H···O hydrogen-bonding interactions (dashed lines), resulting in the formation of an infinite chain. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry ...

Crystal data

C31H29BrN2O7F(000) = 640
Mr = 621.47Dx = 1.459 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5502 reflections
a = 15.0680 (12) Åθ = 2.5–25°
b = 6.6801 (5) ŵ = 1.51 mm1
c = 15.8550 (12) ÅT = 293 K
β = 117.578 (2)°Needle, colourless
V = 1414.57 (19) Å30.3 × 0.2 × 0.2 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer9003 independent reflections
Radiation source: fine-focus sealed tube5502 reflections with I > 2σ(I)
graphiteRint = 0.027
ω and [var phi] scansθmax = 31.7°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker 2004)h = −22→22
Tmin = 0.734, Tmax = 0.740k = −9→8
20450 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.138w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
9003 reflectionsΔρmax = 0.66 e Å3
372 parametersΔρmin = −0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 3886 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.001 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.64016 (18)0.3845 (4)0.35916 (18)0.0430 (6)
H10.68650.47250.40280.052*
C20.5464 (2)0.4517 (5)0.2949 (2)0.0524 (7)
H20.52930.58530.29520.063*
C30.4785 (2)0.3213 (5)0.2304 (2)0.0557 (7)
C40.5020 (2)0.1225 (5)0.2294 (2)0.0576 (8)
H40.45530.03490.18580.069*
C50.5958 (2)0.0545 (4)0.2940 (2)0.0462 (6)
H50.6125−0.07960.29420.055*
C60.66469 (18)0.1858 (4)0.35820 (16)0.0359 (5)
C70.7771 (2)−0.0588 (4)0.47898 (17)0.0415 (5)
C80.85005 (18)0.2249 (4)0.45433 (17)0.0381 (5)
C90.93114 (18)0.1327 (4)0.54302 (17)0.0370 (5)
H90.99310.11050.53850.044*
C100.88614 (19)−0.0602 (4)0.55592 (17)0.0427 (5)
H100.9220−0.17720.54980.051*
C110.94837 (17)0.2561 (3)0.63122 (16)0.0340 (5)
H110.92660.39480.61320.041*
C121.05597 (18)0.2501 (4)0.70747 (16)0.0352 (5)
H121.07750.11090.72400.042*
C131.07749 (18)0.3678 (3)0.79726 (16)0.0347 (5)
H131.05940.29260.84020.042*
C141.18993 (18)0.3982 (4)0.83916 (16)0.0379 (5)
H141.21350.52020.87760.045*
C151.20853 (17)0.3989 (4)0.75221 (16)0.0402 (5)
H151.23190.53060.74370.048*
C161.3149 (2)0.1722 (4)0.86285 (19)0.0447 (6)
C171.3205 (3)−0.0535 (6)0.8586 (3)0.0690 (9)
H17A1.3361−0.10920.91970.104*
H17B1.3718−0.08980.84150.104*
H17C1.2572−0.10470.81180.104*
C181.4135 (2)0.2643 (7)0.9303 (3)0.0759 (11)
H18A1.40630.40710.93040.114*
H18B1.46290.23140.91040.114*
H18C1.43420.21340.99330.114*
C190.9839 (2)0.6190 (4)0.82909 (19)0.0432 (6)
H19A0.94390.51110.83490.052*
H19B0.93920.73020.79800.052*
C201.05951 (18)0.6836 (3)0.92725 (17)0.0359 (5)
C211.0676 (2)0.5854 (4)1.00695 (19)0.0453 (6)
H211.02860.47291.00050.054*
C221.1336 (2)0.6541 (5)1.0960 (2)0.0557 (7)
H221.13790.58841.14950.067*
C231.1925 (2)0.8162 (5)1.1073 (2)0.0600 (8)
H231.23660.86091.16800.072*
C241.1866 (2)0.9139 (5)1.0285 (2)0.0587 (7)
H241.22711.02421.03560.070*
C251.1202 (2)0.8473 (4)0.9390 (2)0.0471 (6)
H251.11620.91340.88570.057*
C260.78715 (19)0.2237 (4)0.63967 (16)0.0380 (5)
C270.7611 (2)0.4255 (5)0.6230 (2)0.0486 (6)
H270.80810.52000.62700.058*
C280.6640 (3)0.4843 (6)0.6006 (3)0.0656 (9)
H280.64650.61870.58860.079*
C290.5940 (2)0.3490 (6)0.5957 (3)0.0699 (10)
H290.52940.39010.58070.084*
C300.6209 (2)0.1490 (6)0.6135 (2)0.0645 (9)
H300.57370.05510.61000.077*
C310.7164 (2)0.0883 (5)0.6361 (2)0.0511 (7)
H310.7336−0.04600.64920.061*
N10.76087 (15)0.1169 (3)0.42650 (14)0.0342 (4)
N20.88766 (16)0.1595 (3)0.66968 (14)0.0367 (4)
O10.85721 (15)0.3700 (3)0.41335 (14)0.0592 (6)
O20.71522 (18)−0.1839 (3)0.46666 (16)0.0608 (6)
O30.89191 (14)−0.0499 (3)0.64921 (12)0.0442 (4)
O41.11759 (13)0.3476 (3)0.67218 (12)0.0419 (4)
O51.28173 (14)0.2528 (3)0.77001 (14)0.0501 (5)
O61.23964 (13)0.2227 (3)0.88938 (12)0.0419 (4)
O71.02692 (15)0.5529 (3)0.77010 (13)0.0429 (4)
Br10.35138 (3)0.41736 (8)0.14395 (3)0.1005 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0417 (13)0.0400 (13)0.0428 (13)−0.0072 (11)0.0157 (11)−0.0124 (11)
C20.0489 (15)0.0478 (14)0.0581 (17)0.0043 (12)0.0228 (13)−0.0084 (13)
C30.0343 (14)0.0731 (19)0.0541 (18)0.0086 (13)0.0158 (13)−0.0138 (14)
C40.0374 (14)0.0683 (19)0.0611 (18)−0.0091 (13)0.0177 (13)−0.0319 (15)
C50.0384 (13)0.0423 (12)0.0578 (17)−0.0065 (11)0.0222 (12)−0.0192 (12)
C60.0352 (12)0.0398 (12)0.0353 (12)−0.0065 (9)0.0185 (10)−0.0070 (9)
C70.0558 (15)0.0311 (11)0.0400 (13)−0.0054 (11)0.0244 (11)−0.0081 (10)
C80.0340 (12)0.0461 (13)0.0338 (12)−0.0050 (10)0.0153 (10)−0.0001 (10)
C90.0329 (12)0.0425 (12)0.0357 (12)0.0009 (9)0.0161 (10)0.0006 (10)
C100.0530 (14)0.0315 (11)0.0431 (14)0.0070 (11)0.0218 (11)0.0019 (10)
C110.0334 (11)0.0352 (11)0.0328 (11)0.0030 (9)0.0149 (9)0.0044 (9)
C120.0341 (12)0.0363 (11)0.0350 (12)−0.0004 (9)0.0158 (10)0.0014 (9)
C130.0381 (12)0.0349 (11)0.0329 (11)0.0004 (9)0.0181 (10)0.0045 (9)
C140.0393 (11)0.0383 (11)0.0316 (11)−0.0032 (10)0.0127 (9)−0.0022 (10)
C150.0358 (11)0.0427 (12)0.0385 (12)−0.0072 (10)0.0142 (10)0.0027 (11)
C160.0345 (13)0.0587 (15)0.0402 (13)0.0000 (11)0.0166 (11)0.0047 (12)
C170.076 (2)0.0624 (19)0.080 (2)0.0156 (18)0.0458 (19)0.0102 (17)
C180.0406 (18)0.111 (3)0.064 (2)−0.0090 (18)0.0140 (16)−0.008 (2)
C190.0424 (14)0.0470 (14)0.0435 (14)0.0091 (11)0.0227 (12)0.0013 (11)
C200.0380 (12)0.0380 (12)0.0371 (12)0.0077 (10)0.0219 (10)0.0018 (10)
C210.0496 (15)0.0464 (14)0.0456 (15)0.0005 (12)0.0268 (13)0.0069 (11)
C220.0602 (18)0.0670 (18)0.0401 (15)0.0136 (15)0.0234 (14)0.0121 (13)
C230.0455 (16)0.077 (2)0.0481 (17)0.0061 (15)0.0141 (13)−0.0170 (15)
C240.0553 (16)0.0568 (16)0.0696 (19)−0.0134 (15)0.0337 (14)−0.0139 (16)
C250.0585 (17)0.0401 (13)0.0524 (16)−0.0017 (11)0.0338 (14)0.0016 (11)
C260.0387 (13)0.0487 (13)0.0282 (11)−0.0048 (10)0.0167 (10)−0.0032 (10)
C270.0428 (13)0.0461 (14)0.0596 (16)0.0018 (12)0.0259 (12)0.0012 (13)
C280.0530 (19)0.071 (2)0.078 (2)0.0156 (15)0.0347 (17)0.0065 (17)
C290.0366 (15)0.108 (3)0.067 (2)0.0044 (16)0.0253 (15)−0.008 (2)
C300.0486 (18)0.088 (3)0.065 (2)−0.0179 (17)0.0339 (16)−0.0119 (18)
C310.0508 (16)0.0582 (16)0.0496 (16)−0.0155 (13)0.0278 (13)−0.0062 (13)
N10.0341 (10)0.0343 (9)0.0339 (10)−0.0038 (7)0.0155 (8)−0.0032 (8)
N20.0378 (10)0.0365 (10)0.0355 (10)−0.0027 (8)0.0166 (8)−0.0001 (8)
O10.0442 (10)0.0710 (13)0.0481 (11)−0.0187 (9)0.0092 (8)0.0213 (10)
O20.0768 (15)0.0417 (10)0.0591 (13)−0.0238 (10)0.0274 (12)−0.0086 (9)
O30.0540 (10)0.0345 (8)0.0416 (9)0.0038 (8)0.0198 (8)0.0092 (7)
O40.0365 (9)0.0575 (11)0.0325 (8)−0.0067 (8)0.0167 (7)−0.0015 (7)
O50.0431 (11)0.0668 (12)0.0457 (10)0.0046 (9)0.0250 (9)0.0085 (9)
O60.0403 (10)0.0494 (10)0.0364 (9)0.0036 (8)0.0180 (8)0.0072 (7)
O70.0575 (11)0.0388 (9)0.0350 (9)0.0079 (8)0.0235 (8)0.0037 (7)
Br10.0491 (2)0.1229 (4)0.0909 (3)0.0303 (2)−0.00047 (17)−0.0247 (3)

Geometric parameters (Å, °)

C1—C21.379 (4)C16—O61.421 (3)
C1—C61.380 (4)C16—O51.423 (3)
C1—H10.9300C16—C181.502 (4)
C2—C31.372 (4)C16—C171.513 (5)
C2—H20.9300C17—H17A0.9600
C3—C41.377 (5)C17—H17B0.9600
C3—Br11.878 (3)C17—H17C0.9600
C4—C51.384 (4)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.380 (3)C18—H18C0.9600
C5—H50.9300C19—O71.433 (3)
C6—N11.425 (3)C19—C201.505 (4)
C7—O21.198 (3)C19—H19A0.9700
C7—N11.393 (3)C19—H19B0.9700
C7—C101.527 (4)C20—C211.378 (3)
C8—O11.199 (3)C20—C251.382 (4)
C8—N11.405 (3)C21—C221.376 (4)
C8—C91.503 (3)C21—H210.9300
C9—C101.513 (4)C22—C231.359 (5)
C9—C111.538 (3)C22—H220.9300
C9—H90.9800C23—C241.375 (5)
C10—O31.443 (3)C23—H230.9300
C10—H100.9800C24—C251.377 (4)
C11—N21.464 (3)C24—H240.9300
C11—C121.509 (3)C25—H250.9300
C11—H110.9800C26—C311.379 (4)
C12—O41.442 (3)C26—C271.395 (4)
C12—C131.524 (3)C26—N21.427 (3)
C12—H120.9800C27—C281.392 (4)
C13—O71.411 (3)C27—H270.9300
C13—C141.520 (3)C28—C291.364 (5)
C13—H130.9800C28—H280.9300
C14—O61.420 (3)C29—C301.386 (6)
C14—C151.529 (3)C29—H290.9300
C14—H140.9800C30—C311.374 (4)
C15—O51.400 (3)C30—H300.9300
C15—O41.413 (3)C31—H310.9300
C15—H150.9800N2—O31.444 (3)
C2—C1—C6119.5 (2)O6—C16—C17108.6 (2)
C2—C1—H1120.2O5—C16—C17109.3 (3)
C6—C1—H1120.2C18—C16—C17112.5 (3)
C3—C2—C1120.0 (3)C16—C17—H17A109.5
C3—C2—H2120.0C16—C17—H17B109.5
C1—C2—H2120.0H17A—C17—H17B109.5
C2—C3—C4120.9 (3)C16—C17—H17C109.5
C2—C3—Br1119.0 (2)H17A—C17—H17C109.5
C4—C3—Br1120.2 (2)H17B—C17—H17C109.5
C3—C4—C5119.3 (3)C16—C18—H18A109.5
C3—C4—H4120.4C16—C18—H18B109.5
C5—C4—H4120.4H18A—C18—H18B109.5
C6—C5—C4119.9 (3)C16—C18—H18C109.5
C6—C5—H5120.1H18A—C18—H18C109.5
C4—C5—H5120.1H18B—C18—H18C109.5
C1—C6—C5120.4 (2)O7—C19—C20114.1 (2)
C1—C6—N1119.1 (2)O7—C19—H19A108.7
C5—C6—N1120.5 (2)C20—C19—H19A108.7
O2—C7—N1125.6 (3)O7—C19—H19B108.7
O2—C7—C10126.5 (2)C20—C19—H19B108.7
N1—C7—C10107.9 (2)H19A—C19—H19B107.6
O1—C8—N1123.9 (2)C21—C20—C25118.8 (2)
O1—C8—C9126.9 (2)C21—C20—C19121.0 (2)
N1—C8—C9109.2 (2)C25—C20—C19120.2 (2)
C8—C9—C10104.74 (19)C22—C21—C20119.8 (3)
C8—C9—C11110.7 (2)C22—C21—H21120.1
C10—C9—C11103.35 (19)C20—C21—H21120.1
C8—C9—H9112.5C23—C22—C21121.2 (3)
C10—C9—H9112.5C23—C22—H22119.4
C11—C9—H9112.5C21—C22—H22119.4
O3—C10—C9106.3 (2)C22—C23—C24119.7 (3)
O3—C10—C7110.5 (2)C22—C23—H23120.2
C9—C10—C7105.72 (19)C24—C23—H23120.2
O3—C10—H10111.4C25—C24—C23119.5 (3)
C9—C10—H10111.4C25—C24—H24120.2
C7—C10—H10111.4C23—C24—H24120.2
N2—C11—C12107.55 (18)C24—C25—C20120.9 (3)
N2—C11—C9105.52 (19)C24—C25—H25119.5
C12—C11—C9112.38 (19)C20—C25—H25119.5
N2—C11—H11110.4C31—C26—C27118.8 (3)
C12—C11—H11110.4C31—C26—N2119.8 (2)
C9—C11—H11110.4C27—C26—N2121.1 (2)
O4—C12—C11108.86 (18)C28—C27—C26119.5 (3)
O4—C12—C13103.47 (18)C28—C27—H27120.3
C11—C12—C13114.83 (19)C26—C27—H27120.3
O4—C12—H12109.8C29—C28—C27121.3 (3)
C11—C12—H12109.8C29—C28—H28119.3
C13—C12—H12109.8C27—C28—H28119.3
O7—C13—C14110.6 (2)C28—C29—C30118.8 (3)
O7—C13—C12108.39 (18)C28—C29—H29120.6
C14—C13—C12100.91 (18)C30—C29—H29120.6
O7—C13—H13112.1C31—C30—C29120.6 (3)
C14—C13—H13112.1C31—C30—H30119.7
C12—C13—H13112.1C29—C30—H30119.7
O6—C14—C13109.06 (19)C30—C31—C26120.9 (3)
O6—C14—C15103.8 (2)C30—C31—H31119.5
C13—C14—C15103.82 (17)C26—C31—H31119.5
O6—C14—H14113.1C7—N1—C8111.6 (2)
C13—C14—H14113.1C7—N1—C6124.2 (2)
C15—C14—H14113.1C8—N1—C6124.1 (2)
O5—C15—O4111.0 (2)C26—N2—O3111.51 (19)
O5—C15—C14105.81 (19)C26—N2—C11120.00 (19)
O4—C15—C14107.62 (18)O3—N2—C11103.42 (17)
O5—C15—H15110.8N2—O3—C10106.78 (17)
O4—C15—H15110.8C15—O4—C12106.98 (17)
C14—C15—H15110.8C15—O5—C16109.83 (19)
O6—C16—O5105.7 (2)C14—O6—C16108.42 (18)
O6—C16—C18110.7 (2)C13—O7—C19114.50 (18)
O5—C16—C18109.9 (3)
C6—C1—C2—C3−0.2 (4)C19—C20—C25—C24177.0 (3)
C1—C2—C3—C40.7 (5)C31—C26—C27—C28−1.9 (4)
C1—C2—C3—Br1179.9 (2)N2—C26—C27—C28−175.4 (3)
C2—C3—C4—C5−0.5 (5)C26—C27—C28—C290.9 (5)
Br1—C3—C4—C5−179.7 (2)C27—C28—C29—C30−0.1 (6)
C3—C4—C5—C6−0.3 (5)C28—C29—C30—C310.3 (6)
C2—C1—C6—C5−0.5 (4)C29—C30—C31—C26−1.4 (5)
C2—C1—C6—N1−178.4 (2)C27—C26—C31—C302.2 (4)
C4—C5—C6—C10.8 (4)N2—C26—C31—C30175.7 (3)
C4—C5—C6—N1178.6 (2)O2—C7—N1—C8−175.9 (2)
O1—C8—C9—C10−172.5 (3)C10—C7—N1—C85.6 (3)
N1—C8—C9—C109.1 (3)O2—C7—N1—C68.6 (4)
O1—C8—C9—C1176.7 (3)C10—C7—N1—C6−169.94 (19)
N1—C8—C9—C11−101.7 (2)O1—C8—N1—C7172.1 (2)
C8—C9—C10—O3−123.0 (2)C9—C8—N1—C7−9.4 (3)
C11—C9—C10—O3−7.1 (2)O1—C8—N1—C6−12.3 (4)
C8—C9—C10—C7−5.5 (2)C9—C8—N1—C6166.1 (2)
C11—C9—C10—C7110.4 (2)C1—C6—N1—C7134.2 (2)
O2—C7—C10—O3−63.6 (3)C5—C6—N1—C7−43.7 (3)
N1—C7—C10—O3114.9 (2)C1—C6—N1—C8−40.8 (3)
O2—C7—C10—C9−178.2 (3)C5—C6—N1—C8141.3 (2)
N1—C7—C10—C90.3 (2)C31—C26—N2—O327.9 (3)
C8—C9—C11—N295.2 (2)C27—C26—N2—O3−158.7 (2)
C10—C9—C11—N2−16.4 (2)C31—C26—N2—C11149.0 (2)
C8—C9—C11—C12−147.9 (2)C27—C26—N2—C11−37.7 (3)
C10—C9—C11—C12100.5 (2)C12—C11—N2—C26148.6 (2)
N2—C11—C12—O4−179.02 (17)C9—C11—N2—C26−91.2 (2)
C9—C11—C12—O465.3 (2)C12—C11—N2—O3−86.4 (2)
N2—C11—C12—C13−63.6 (2)C9—C11—N2—O333.8 (2)
C9—C11—C12—C13−179.3 (2)C26—N2—O3—C1091.0 (2)
O4—C12—C13—O775.3 (2)C11—N2—O3—C10−39.3 (2)
C11—C12—C13—O7−43.2 (3)C9—C10—O3—N228.7 (2)
O4—C12—C13—C14−40.9 (2)C7—C10—O3—N2−85.5 (2)
C11—C12—C13—C14−159.34 (19)O5—C15—O4—C1295.9 (2)
O7—C13—C14—O6163.81 (18)C14—C15—O4—C12−19.5 (3)
C12—C13—C14—O6−81.6 (2)C11—C12—O4—C15160.8 (2)
O7—C13—C14—C15−86.0 (2)C13—C12—O4—C1538.2 (2)
C12—C13—C14—C1528.5 (2)O4—C15—O5—C16−120.5 (2)
O6—C14—C15—O5−11.6 (2)C14—C15—O5—C16−4.1 (3)
C13—C14—C15—O5−125.6 (2)O6—C16—O5—C1518.4 (3)
O6—C14—C15—O4107.1 (2)C18—C16—O5—C15−101.0 (3)
C13—C14—C15—O4−6.9 (3)C17—C16—O5—C15135.0 (3)
O7—C19—C20—C21−118.0 (3)C13—C14—O6—C16133.4 (2)
O7—C19—C20—C2564.0 (3)C15—C14—O6—C1623.3 (2)
C25—C20—C21—C221.6 (4)O5—C16—O6—C14−26.3 (3)
C19—C20—C21—C22−176.4 (2)C18—C16—O6—C1492.6 (3)
C20—C21—C22—C23−1.0 (4)C17—C16—O6—C14−143.4 (2)
C21—C22—C23—C24−0.1 (5)C14—C13—O7—C19−109.0 (2)
C22—C23—C24—C250.6 (5)C12—C13—O7—C19141.2 (2)
C23—C24—C25—C200.0 (4)C20—C19—O7—C1370.5 (3)
C21—C20—C25—C24−1.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.463.273 (3)145
C5—H5···O5ii0.932.523.198 (3)130
C9—H9···O1ii0.982.583.418 (3)144
C19—H19B···O3i0.972.583.360 (3)137
C17—H17b···Cg1iii0.962.863.720 (4)150
C21—H21···Cg2iv0.932.673.559 (7)160

Symmetry codes: (i) x, y+1, z; (ii) −x+2, y−1/2, −z+1; (iii) −x, y−1/2, −z+1; (iv) −x, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2932).

References

  • Ali, A. S., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911–5920.
  • Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Goti, A., Fedi, V., Naneli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577-579.
  • Huisgen, R. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. I, edited by A. Padawa, pp. 3–27. New York: Wiley Interscience.
  • Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun.33, 1545–1555.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography