PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1155.
Published online 2009 April 30. doi:  10.1107/S1600536809015396
PMCID: PMC2977821

2-[(4-Chloro­phen­yl)imino­meth­yl]hydro­quinone

Abstract

The title compound, C13H10ClNO2, exists in the phenol–imine form in the crystal, and the aromatic rings are oriented at a dihedral angle of 2.82 (9)°. An intra­molecular O—H(...)N hydrogen bond results in the formation of a planar six-membered ring. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into chains.

Related literature

For general background to o-hydr­oxy Schiff bases, see: Calligaris et al. (1972 [triangle]); Hadjoudis et al. (1987 [triangle]); Hökelek et al. (2004 [triangle]); Maslen & Waters (1975 [triangle]); Moustakali-Mavridis et al. (1980 [triangle]); Xu et al. (1994 [triangle]). For related structures, see: Filarowski et al. (2003 [triangle]); Karadayı et al. (2003 [triangle]); Yıldız et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1155-scheme1.jpg

Experimental

Crystal data

  • C13H10ClNO2
  • M r = 247.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1155-efi1.jpg
  • a = 20.3347 (14) Å
  • b = 4.5848 (2) Å
  • c = 12.0383 (9) Å
  • β = 98.231 (6)°
  • V = 1110.78 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 296 K
  • 0.80 × 0.40 × 0.06 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.819, T max = 0.978
  • 15373 measured reflections
  • 2185 independent reflections
  • 1575 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.091
  • S = 0.95
  • 2185 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-RED32 (Stoe & Cie, 2002 [triangle]); data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015396/hk2670sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015396/hk2670Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

o-Hydroxy Schiff bases derived from the reactions of o-hydroxyaldehydes with aniline have been examined extensively (Calligaris et al., 1972; Maslen & Waters, 1975). In general, o-hydroxy Schiff bases exhibit two possible tautomeric forms, namely, phenol-imine and keto-amine. Naphthaldimine and salicylaldimine can also exist in the phenol-imine and keto-amine forms, respectively depending on the stereochemistry of the molecule and the type of nitrogen substituents in naphthaldimine and salicylaldimine Schiff bases (Hökelek et al., 2004). Schiff base compounds display interesting photochromic and thermochromic features and can be classified in terms of these ( Moustakali-Mavridis et al., 1980; Hadjoudis et al., 1987). Photo- and thermochromism arise via H atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994).

In the title compound (Fig. 1), the phenol-imine form is favored over the keto-amine form, as indicated by C13-O1 [1.356 (2) Å] and C7-N1 [1.280 (2) Å] bonds, which are in accordance with the corresponding values in a similar compound [C-O = 1.352 (3) and C-N = 1.280 (4) Å; Karadayı et al., 2003]. As a common feature of o-hydroxysalicylidene systems, the title compound displays a strong hydrogen bond between atoms N1 and O1 (Filarowski et al., 2003; Yıldız et al., 1998).

It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound caused by planarity of the molecule; the dihedral angle between rings A (C1-C6) and B (C8-C13) is 2.82 (9)°. Intramolecular O-H···N hydrogen bond (Table 1) results in the formation of a planar six-membered ring C (O1/N1/C7/C8/C13/H1), which is oriented with respect to rings A and B at dihedral angles of A/C = 2.97 (8) and B/C = 1.35 (8) °. So, they are nearly coplanar.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound was prepared by refluxing a mixture of a solution containing 2,5-dihydroxybenzaldehyde (0.034 g 0.246 mmol) in ethanol (20 ml) and a solution containing 4-chloroaniline (0.031 g 0.246 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield; 69%; m.p. 439-441 K).

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H10ClNO2F(000) = 512
Mr = 247.67Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13223 reflections
a = 20.3347 (14) Åθ = 1.7–27.2°
b = 4.5848 (2) ŵ = 0.33 mm1
c = 12.0383 (9) ÅT = 296 K
β = 98.231 (6)°Plate, brown
V = 1110.78 (12) Å30.80 × 0.40 × 0.06 mm
Z = 4

Data collection

Stoe IPDS-II diffractometer2185 independent reflections
Radiation source: fine-focus sealed tube1575 reflections with I > 2σ(I)
graphiteRint = 0.069
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω scansh = −25→25
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −5→5
Tmin = 0.819, Tmax = 0.978l = −14→14
15373 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.95w = 1/[σ2(Fo2) + (0.0571P)2] where P = (Fo2 + 2Fc2)/3
2185 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Experimental. 370 frames, detector distance = 120 mm
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.46483 (2)1.40871 (10)0.33464 (4)0.06076 (18)
O10.21937 (7)0.2322 (3)0.60021 (10)0.0600 (4)
H10.24410.35000.57590.090*
O20.03814 (6)−0.1943 (3)0.25297 (11)0.0554 (3)
H20.0127−0.31150.27570.083*
N10.26643 (6)0.5541 (3)0.44912 (11)0.0404 (3)
C10.31206 (7)0.7617 (3)0.41651 (14)0.0390 (3)
C20.35972 (8)0.8701 (4)0.50029 (14)0.0469 (4)
H2A0.35990.80790.57390.056*
C30.40681 (8)1.0686 (4)0.47659 (15)0.0491 (4)
H30.43881.13800.53340.059*
C40.40585 (8)1.1623 (3)0.36807 (15)0.0445 (4)
C50.35838 (9)1.0629 (4)0.28379 (15)0.0499 (4)
H50.35781.13040.21080.060*
C60.31162 (8)0.8628 (4)0.30758 (14)0.0480 (4)
H60.27960.79540.25040.058*
C70.22399 (8)0.4302 (3)0.37519 (13)0.0409 (4)
H70.22380.47770.30000.049*
C80.17625 (7)0.2186 (3)0.40433 (13)0.0384 (3)
C90.13019 (8)0.1001 (3)0.31857 (14)0.0421 (4)
H90.13120.15610.24460.051*
C100.08364 (8)−0.0975 (3)0.34244 (14)0.0427 (4)
C110.08231 (9)−0.1840 (4)0.45228 (16)0.0510 (4)
H110.0504−0.31640.46860.061*
C120.12807 (9)−0.0745 (4)0.53729 (15)0.0530 (4)
H120.1274−0.13600.61070.064*
C130.17529 (8)0.1273 (4)0.51433 (13)0.0436 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0545 (3)0.0499 (3)0.0821 (4)−0.0131 (2)0.0244 (2)−0.0049 (2)
O10.0675 (8)0.0733 (8)0.0374 (7)−0.0226 (7)0.0010 (6)0.0007 (6)
O20.0450 (7)0.0519 (7)0.0651 (8)−0.0090 (5)−0.0062 (6)−0.0033 (6)
N10.0395 (7)0.0397 (7)0.0417 (7)−0.0030 (6)0.0047 (6)−0.0009 (6)
C10.0380 (8)0.0355 (7)0.0436 (9)−0.0002 (6)0.0065 (7)−0.0012 (7)
C20.0499 (9)0.0477 (9)0.0426 (9)−0.0046 (7)0.0049 (7)−0.0003 (7)
C30.0448 (9)0.0481 (9)0.0527 (11)−0.0080 (8)0.0012 (7)−0.0062 (8)
C40.0402 (9)0.0367 (8)0.0590 (11)−0.0017 (6)0.0148 (8)−0.0036 (7)
C50.0546 (10)0.0507 (9)0.0457 (10)−0.0048 (8)0.0115 (8)0.0037 (8)
C60.0469 (9)0.0514 (10)0.0446 (10)−0.0094 (7)0.0025 (7)0.0003 (8)
C70.0436 (8)0.0408 (8)0.0383 (9)−0.0014 (7)0.0062 (7)0.0019 (7)
C80.0380 (8)0.0371 (8)0.0400 (9)0.0013 (6)0.0050 (7)−0.0007 (6)
C90.0445 (9)0.0414 (8)0.0398 (9)0.0004 (7)0.0036 (7)0.0026 (7)
C100.0360 (8)0.0390 (8)0.0514 (10)0.0006 (7)0.0008 (7)−0.0037 (7)
C110.0454 (10)0.0472 (9)0.0622 (12)−0.0074 (7)0.0141 (8)0.0023 (8)
C120.0591 (11)0.0559 (10)0.0458 (10)−0.0076 (9)0.0138 (8)0.0056 (8)
C130.0444 (9)0.0474 (9)0.0391 (9)−0.0027 (7)0.0060 (7)−0.0019 (7)

Geometric parameters (Å, °)

O1—H10.8200C7—N11.280 (2)
O2—H20.8200C7—C81.451 (2)
C1—C21.387 (2)C7—H70.9300
C1—C61.390 (2)C8—C131.392 (2)
C1—N11.4229 (19)C8—C91.401 (2)
C2—C31.380 (2)C9—C101.370 (2)
C2—H2A0.9300C9—H90.9300
C3—C41.373 (3)C10—C111.384 (2)
C3—H30.9300C10—O21.3883 (19)
C4—C51.374 (2)C11—C121.376 (3)
C4—Cl11.7365 (16)C11—H110.9300
C5—C61.381 (2)C12—C131.389 (2)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—O11.3557 (19)
C13—O1—H1109.5N1—C7—C8122.44 (14)
C10—O2—H2109.5N1—C7—H7118.8
C7—N1—C1120.41 (14)C8—C7—H7118.8
C2—C1—C6118.42 (15)C13—C8—C9119.06 (15)
C2—C1—N1117.03 (14)C13—C8—C7122.16 (14)
C6—C1—N1124.55 (14)C9—C8—C7118.78 (14)
C3—C2—C1121.29 (16)C10—C9—C8120.75 (15)
C3—C2—H2A119.4C10—C9—H9119.6
C1—C2—H2A119.4C8—C9—H9119.6
C4—C3—C2119.16 (16)C9—C10—C11119.88 (15)
C4—C3—H3120.4C9—C10—O2116.90 (15)
C2—C3—H3120.4C11—C10—O2123.20 (15)
C3—C4—C5120.78 (15)C12—C11—C10120.16 (16)
C3—C4—Cl1120.53 (13)C12—C11—H11119.9
C5—C4—Cl1118.69 (14)C10—C11—H11119.9
C4—C5—C6119.93 (16)C11—C12—C13120.54 (16)
C4—C5—H5120.0C11—C12—H12119.7
C6—C5—H5120.0C13—C12—H12119.7
C5—C6—C1120.39 (15)O1—C13—C12118.99 (15)
C5—C6—H6119.8O1—C13—C8121.41 (14)
C1—C6—H6119.8C12—C13—C8119.59 (15)
C8—C7—N1—C1−179.65 (13)N1—C7—C8—C9178.06 (15)
C2—C1—N1—C7−175.30 (14)C13—C8—C9—C101.7 (2)
C6—C1—N1—C75.2 (2)C7—C8—C9—C10−179.12 (14)
C6—C1—C2—C3−1.5 (2)C8—C9—C10—C11−0.7 (2)
N1—C1—C2—C3178.92 (14)C8—C9—C10—O2177.31 (14)
C1—C2—C3—C40.7 (3)C9—C10—C11—C12−0.7 (3)
C2—C3—C4—C50.6 (3)O2—C10—C11—C12−178.57 (15)
C2—C3—C4—Cl1−179.27 (12)C10—C11—C12—C131.1 (3)
C3—C4—C5—C6−1.1 (3)C11—C12—C13—O1179.57 (16)
Cl1—C4—C5—C6178.81 (13)C11—C12—C13—C8−0.1 (3)
C4—C5—C6—C10.2 (3)C9—C8—C13—O1179.08 (14)
C2—C1—C6—C51.1 (2)C7—C8—C13—O1−0.1 (2)
N1—C1—C6—C5−179.43 (15)C9—C8—C13—C12−1.3 (2)
N1—C7—C8—C13−2.7 (2)C7—C8—C13—C12179.54 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.6270 (18)147
O2—H2···O2i0.822.042.7631 (13)147

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2670).

References

  • Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev.7, 385–403.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Filarowski, A., Koll, A. & Glowiaka, T. (2003). J. Mol. Struct.644, 187–195.
  • Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). Tetrahedron, 43, 1345–1360.
  • Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. [PubMed]
  • Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851–o853.
  • Maslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev.17, 137–176.
  • Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
  • Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.
  • Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct.441, 1–10.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography