PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1141.
Published online 2009 April 30. doi:  10.1107/S1600536809014809
PMCID: PMC2977811

3-[(3,5-Di-tert-butyl-2-hydroxy­benzyl­idene)methyl­eneamino]benzonitrile

Abstract

The mol­ecule of the title compound, C22H26N2O, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the planes of the two aromatic rings is 26.30 (15)°. There is a strong intra­molecular O—H(...)N hydrogen bond between the imine and hydroxyl groups.

Related literature

For general background on Schiff base coordination complexes, see: Weber et al. (2007 [triangle]); Chen et al. (2008 [triangle]); May et al. (2004 [triangle]). For double-bond-length data, see: Elmah et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1141-scheme1.jpg

Experimental

Crystal data

  • C22H26N2O
  • M r = 334.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1141-efi1.jpg
  • a = 14.897 (3) Å
  • b = 15.684 (3) Å
  • c = 8.8581 (18) Å
  • β = 97.86 (3)°
  • V = 2050.2 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.903, T max = 1.000 (expected range = 0.891–0.987)
  • 10436 measured reflections
  • 3701 independent reflections
  • 1746 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.189
  • S = 0.99
  • 3701 reflections
  • 230 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014809/gw2063sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014809/gw2063Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber, et al., 2007), catalysis (Chen, et al., 2008) and biological process (May, et al.,2004). Our group is interested in the synthesis and preparation of Schiff base. Here, we report the synthesis and crystal structure of the title compound, (I).

Fig. 1 shows ORTEP plots of the title compounds. The dihedral angle between the mean planes of the two aromatic rings is 26.30 (0.15) ° showing that the Schiff-base ligand adopts a non-planar conformation. As expected, the molecule displays a trans configuration about the central C8=N2 function bond. The C8=N2 bond length of 1.286 (3)Å indicates a high degree of double-bond character comparable with the corresponding bond lengths in other Schiff bases (1.280 (2) Å; Elmah et al., 1999). A strong intramolecular O–H···N hydrogen bond interaction is observed in the molecular structure.

Experimental

All chemicals were obtained from commercial sources and used without further purification. 3-aminobenzonitrile (0.59 g, 5 mmol) and 3,5-di-t-butyl-2-hydroxybenzaldehyde (1.05 g, 4.5 mmol)were dissolved in ethanol (20 ml). The mixture was heated to reflux for 7 h, then cooled to room temperature the solution was filtered and after two weeks yellow crystals suitable for X-ray diffraction study were obtained. Yield: 1.27 g, 85%.

Refinement

All the H atoms were found in the difference Fourier maps. The position of H1A is refined with the bond constraint O1—H1A = 0.82 Å.

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C22H26N2OF(000) = 720
Mr = 334.45Dx = 1.084 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7104 reflections
a = 14.897 (3) Åθ = 3.0–25.2°
b = 15.684 (3) ŵ = 0.07 mm1
c = 8.8581 (18) ÅT = 293 K
β = 97.86 (3)°Prism, colorless
V = 2050.2 (7) Å30.2 × 0.2 × 0.2 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer3701 independent reflections
Radiation source: fine-focus sealed tube1746 reflections with I > 2σ(I)
graphiteRint = 0.079
Detector resolution: 13.6612 pixels mm-1θmax = 25.2°, θmin = 3.1°
ω scansh = −17→17
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −14→18
Tmin = 0.903, Tmax = 1.000l = −9→10
10436 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0819P)2] where P = (Fo2 + 2Fc2)/3
3701 reflections(Δ/σ)max = 0.004
230 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.66011 (15)0.15473 (13)0.7833 (2)0.0653 (6)
C100.72011 (19)0.08905 (18)0.8159 (3)0.0505 (8)
N20.59185 (16)0.11626 (15)1.0309 (3)0.0559 (7)
C110.78194 (18)0.06970 (18)0.7144 (3)0.0492 (8)
C90.71779 (18)0.04083 (18)0.9488 (3)0.0490 (7)
C140.77740 (19)−0.02806 (19)0.9807 (3)0.0566 (8)
H14A0.7755−0.05931.06950.068*
C120.83890 (19)0.00022 (19)0.7535 (4)0.0561 (8)
H12A0.8803−0.01340.68760.067*
C10.52589 (19)0.1264 (2)1.1329 (3)0.0520 (8)
C80.6525 (2)0.05759 (19)1.0535 (3)0.0534 (8)
H8A0.65470.02431.14070.064*
C130.83925 (19)−0.05108 (18)0.8837 (4)0.0545 (8)
C20.48863 (19)0.20659 (19)1.1417 (3)0.0563 (8)
H2B0.50780.25131.08500.068*
C30.4222 (2)0.2205 (2)1.2357 (4)0.0610 (9)
C40.3933 (2)0.1543 (3)1.3211 (4)0.0703 (10)
H4A0.34890.16361.38340.084*
C60.49656 (19)0.0600 (2)1.2181 (4)0.0608 (9)
H6A0.52080.00571.21180.073*
C70.3820 (2)0.3038 (3)1.2386 (4)0.0792 (11)
C50.4310 (2)0.0748 (2)1.3128 (4)0.0710 (10)
H5A0.41260.03041.37100.085*
C150.9008 (2)−0.1292 (2)0.9173 (4)0.0705 (10)
C170.8421 (3)−0.2099 (2)0.9016 (6)0.1168 (16)
H17A0.8121−0.21450.79890.175*
H17B0.7977−0.20680.97040.175*
H17C0.8798−0.25900.92570.175*
C160.9728 (3)−0.1349 (3)0.8100 (7)0.145 (2)
H16A0.9437−0.13770.70650.217*
H16B1.0088−0.18510.83320.217*
H16C1.0110−0.08540.82290.217*
N10.3495 (3)0.3705 (2)1.2362 (5)0.1135 (13)
C190.7872 (2)0.1226 (2)0.5690 (4)0.0619 (9)
C200.6964 (2)0.1167 (2)0.4636 (4)0.0807 (11)
H20A0.68390.05810.43680.121*
H20B0.69980.14930.37280.121*
H20C0.64880.13880.51530.121*
C210.8071 (2)0.2170 (2)0.6111 (4)0.0871 (12)
H21A0.76090.23860.66650.131*
H21B0.80790.24970.51980.131*
H21C0.86500.22120.67330.131*
C180.9497 (3)−0.1256 (2)1.0812 (5)0.1196 (17)
H18A0.9058−0.12211.15080.179*
H18B0.9882−0.07631.09310.179*
H18C0.9857−0.17611.10210.179*
C220.8623 (3)0.0909 (3)0.4806 (5)0.1176 (17)
H22A0.85150.03220.45290.176*
H22B0.91990.09600.54340.176*
H22C0.86250.12450.39010.176*
H1A0.618 (3)0.155 (3)0.865 (6)0.166 (19)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0747 (15)0.0676 (14)0.0544 (15)0.0222 (12)0.0120 (12)0.0117 (12)
C100.0533 (18)0.0542 (18)0.0421 (19)0.0053 (16)0.0001 (15)−0.0018 (15)
N20.0599 (16)0.0620 (16)0.0468 (17)0.0058 (14)0.0115 (13)−0.0027 (13)
C110.0463 (17)0.0592 (19)0.0423 (19)−0.0004 (16)0.0064 (14)−0.0020 (15)
C90.0556 (18)0.0545 (18)0.0364 (18)0.0040 (16)0.0047 (14)−0.0008 (15)
C140.064 (2)0.0587 (19)0.0467 (19)−0.0012 (17)0.0041 (16)0.0110 (16)
C120.0492 (18)0.065 (2)0.056 (2)−0.0056 (16)0.0124 (15)−0.0055 (17)
C10.0488 (17)0.064 (2)0.0428 (19)−0.0021 (17)0.0063 (15)−0.0084 (16)
C80.062 (2)0.0577 (19)0.0395 (18)−0.0017 (17)0.0056 (15)−0.0024 (15)
C130.0469 (17)0.0579 (19)0.058 (2)0.0023 (16)0.0054 (15)−0.0025 (17)
C20.058 (2)0.060 (2)0.052 (2)−0.0047 (17)0.0137 (16)−0.0084 (16)
C30.058 (2)0.068 (2)0.058 (2)−0.0018 (18)0.0112 (17)−0.0182 (19)
C40.055 (2)0.095 (3)0.065 (2)−0.011 (2)0.0217 (18)−0.013 (2)
C60.057 (2)0.063 (2)0.062 (2)−0.0070 (17)0.0070 (17)−0.0004 (18)
C70.081 (3)0.077 (3)0.085 (3)−0.002 (2)0.028 (2)−0.023 (2)
C50.064 (2)0.083 (3)0.069 (2)−0.013 (2)0.0186 (19)0.003 (2)
C150.059 (2)0.065 (2)0.085 (3)0.0121 (18)0.0026 (19)0.0019 (19)
C170.108 (3)0.067 (3)0.166 (5)0.005 (2)−0.015 (3)−0.008 (3)
C160.131 (4)0.136 (4)0.184 (5)0.076 (3)0.080 (4)0.044 (4)
N10.120 (3)0.088 (2)0.140 (4)0.008 (2)0.046 (3)−0.034 (2)
C190.061 (2)0.075 (2)0.051 (2)−0.0047 (18)0.0139 (17)0.0107 (18)
C200.085 (2)0.105 (3)0.049 (2)−0.011 (2)−0.0005 (19)0.007 (2)
C210.093 (3)0.095 (3)0.070 (3)−0.032 (2)−0.001 (2)0.023 (2)
C180.105 (3)0.099 (3)0.138 (4)0.030 (3)−0.043 (3)0.012 (3)
C220.115 (3)0.160 (4)0.090 (3)0.033 (3)0.061 (3)0.045 (3)

Geometric parameters (Å, °)

O1—C101.369 (3)C7—N11.152 (4)
O1—H1A1.03 (5)C5—H5A0.9300
C10—C91.404 (4)C15—C171.535 (4)
C10—C111.405 (4)C15—C161.530 (5)
N2—C81.286 (3)C15—C181.533 (5)
N2—C11.431 (3)C17—H17A0.9600
C11—C121.395 (4)C17—H17B0.9600
C11—C191.543 (4)C17—H17C0.9600
C9—C141.403 (4)C16—H16A0.9600
C9—C81.456 (4)C16—H16B0.9600
C14—C131.391 (4)C16—H16C0.9600
C14—H14A0.9300C19—C221.534 (4)
C12—C131.406 (4)C19—C201.537 (4)
C12—H12A0.9300C19—C211.545 (4)
C1—C21.382 (4)C20—H20A0.9600
C1—C61.391 (4)C20—H20B0.9600
C8—H8A0.9300C20—H20C0.9600
C13—C151.534 (4)C21—H21A0.9600
C2—C31.396 (4)C21—H21B0.9600
C2—H2B0.9300C21—H21C0.9600
C3—C41.387 (4)C18—H18A0.9600
C3—C71.438 (5)C18—H18B0.9600
C4—C51.374 (4)C18—H18C0.9600
C4—H4A0.9300C22—H22A0.9600
C6—C51.390 (4)C22—H22B0.9600
C6—H6A0.9300C22—H22C0.9600
C10—O1—H1A108 (3)C17—C15—C13108.9 (3)
O1—C10—C9119.5 (3)C16—C15—C13112.2 (3)
O1—C10—C11119.6 (3)C18—C15—C13110.4 (3)
C9—C10—C11120.9 (3)C15—C17—H17A109.5
C8—N2—C1120.6 (3)C15—C17—H17B109.5
C12—C11—C10116.1 (3)H17A—C17—H17B109.5
C12—C11—C19121.9 (3)C15—C17—H17C109.5
C10—C11—C19122.0 (3)H17A—C17—H17C109.5
C10—C9—C14119.8 (3)H17B—C17—H17C109.5
C10—C9—C8122.1 (3)C15—C16—H16A109.5
C14—C9—C8118.1 (3)C15—C16—H16B109.5
C13—C14—C9122.0 (3)H16A—C16—H16B109.5
C13—C14—H14A119.0C15—C16—H16C109.5
C9—C14—H14A119.0H16A—C16—H16C109.5
C11—C12—C13125.8 (3)H16B—C16—H16C109.5
C11—C12—H12A117.1C22—C19—C20108.2 (3)
C13—C12—H12A117.1C22—C19—C21107.7 (3)
C2—C1—C6119.5 (3)C20—C19—C21109.2 (3)
C2—C1—N2116.9 (3)C22—C19—C11112.0 (3)
C6—C1—N2123.6 (3)C20—C19—C11109.5 (2)
N2—C8—C9123.1 (3)C21—C19—C11110.1 (3)
N2—C8—H8A118.4C19—C20—H20A109.5
C9—C8—H8A118.4C19—C20—H20B109.5
C14—C13—C12115.5 (3)H20A—C20—H20B109.5
C14—C13—C15121.1 (3)C19—C20—H20C109.5
C12—C13—C15123.4 (3)H20A—C20—H20C109.5
C1—C2—C3119.9 (3)H20B—C20—H20C109.5
C1—C2—H2B120.0C19—C21—H21A109.5
C3—C2—H2B120.0C19—C21—H21B109.5
C4—C3—C2120.4 (3)H21A—C21—H21B109.5
C4—C3—C7120.7 (3)C19—C21—H21C109.5
C2—C3—C7118.9 (3)H21A—C21—H21C109.5
C5—C4—C3119.4 (3)H21B—C21—H21C109.5
C5—C4—H4A120.3C15—C18—H18A109.5
C3—C4—H4A120.3C15—C18—H18B109.5
C5—C6—C1120.1 (3)H18A—C18—H18B109.5
C5—C6—H6A119.9C15—C18—H18C109.5
C1—C6—H6A119.9H18A—C18—H18C109.5
N1—C7—C3178.0 (4)H18B—C18—H18C109.5
C4—C5—C6120.6 (3)C19—C22—H22A109.5
C4—C5—H5A119.7C19—C22—H22B109.5
C6—C5—H5A119.7H22A—C22—H22B109.5
C17—C15—C16109.5 (3)C19—C22—H22C109.5
C17—C15—C18107.9 (3)H22A—C22—H22C109.5
C16—C15—C18107.9 (3)H22B—C22—H22C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N21.03 (5)1.68 (5)2.612 (3)149 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2063).

References

  • Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Elmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct.484, 229–234.
  • May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography