PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1139–o1140.
Published online 2009 April 30. doi:  10.1107/S1600536809014901
PMCID: PMC2977810

2,4-Diphenyl-4,5-dihydro-3H-pyrido[2,3-b][1,4]diazepine

Abstract

The asymmetric unit of the title compound, C20H17N3, contains two crystallographically independent mol­ecules (A and B). In mol­ecule A, the two benzene rings form dihedral angles of 74.12 (7) and 7.83 (7)° with the pyridine ring, while in mol­ecule B these angles are 77.48 (7) and 21.50 (7)°. The seven-membered heterocyclic ring adopts a boat conformation in both mol­ecules. In the crystal structure, each of the independent mol­ecules forms a centrosymmetric R 2 2(8) dimer linked by paired N—H(...)N hydrogen bonds. The crystal structure is further stabilized by inter­molecular C—H(...)N hydrogen bonds and C—H(...)π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For general background and the biological applications of pyridodiazepine compounds, see: Landquist et al. (1984 [triangle]); Smalley et al. (1979 [triangle]); Goswami et al. (2009 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1139-scheme1.jpg

Experimental

Crystal data

  • C20H17N3
  • M r = 299.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1139-efi2.jpg
  • a = 5.9969 (3) Å
  • b = 15.3186 (6) Å
  • c = 17.0676 (7) Å
  • α = 82.588 (3)°
  • β = 85.266 (2)°
  • γ = 88.670 (2)°
  • V = 1549.37 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.50 × 0.33 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.948, T max = 0.996
  • 35167 measured reflections
  • 9044 independent reflections
  • 5978 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.133
  • S = 1.08
  • 9044 reflections
  • 423 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014901/ci2786sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014901/ci2786Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AH, SJ and SG thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. AH thanks the CSIR, Government of India, for a research fellowship. HKF thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of research officer under the Science Fund (grant No. 305/PFIZIK/613312).

supplementary crystallographic information

Comment

Pyridodiazepines are bicyclic heterocyclic compounds comprising of pyridine nucleus fused to a seven-membered ring containing two nitrogen atoms (Landquist et al., 1984). These compounds have important role in biological and therapeutic applications (Smalley et al., 1979). 2,4-Diphenyl-4,5-dihydro-3H-pyrido[2,3-b][1,4]diazepine was synthesized by our newly developed microwave technique (Goswami et al., 2009). We report here the crystal structure of this compound.

The asymmetric unit of title compound (Fig 1), consists of two crystallographically independent molecules, A and B. In the molecule A, the C7A-C12A and C15A-C20A rings form dihedral angles of 74.12 (7)° and 7.83 (7)°, respectively, with the N2A/C1A-C5A ring, while in B these angles are 77.48 (7)° and 21.50 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The seven-membered heterocyclic ring adopts a boat conformation.

In the crystal structure, A/A and B/B pairs of inversion related molecules are linked by N—H···N hydrogen bonds forming R22(8) dimers (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···N hydrogen bonds and C—H···π interactions (Table 1).

Experimental

A mixture of pyridine-2,3-diamine (109 mg, 1.0 mmol) and the chalcone benzylideneacetophenone (208 mg, 1.0 mmol) was thoroughly grinded and taken in an open mouth conical flask and then irradiated at 400 W for 35 min in a microwave oven. The residue was dissolved in water and then extracted with CHCl3. The crude product was purified through column chromatography to afford a pure yellow-colored 2,4-diphenyl-4,5-dihydro-3H-pyrido[2,3-b][1,4]diazepine. Single crystals were grown by slow evaporation of a chloroform solution (m.p. 126-128 °C).

Refinement

Atoms H3NA and H3NB were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model approximation, with C-H = 0.93-0.98 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. C—H···π interactions are shown as dashed lines.
Fig. 2.
The crystal packing of the title compound, viewed down the a axis, showing centrosymmetric R22(8) dimers. Hydrogen bonds are shown as dashed lines.

Crystal data

C20H17N3Z = 4
Mr = 299.37F(000) = 632
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9969 (3) ÅCell parameters from 5436 reflections
b = 15.3186 (6) Åθ = 1.3–30.1°
c = 17.0676 (7) ŵ = 0.08 mm1
α = 82.588 (3)°T = 100 K
β = 85.266 (2)°Plate, yellow
γ = 88.670 (2)°0.50 × 0.33 × 0.05 mm
V = 1549.37 (12) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer9044 independent reflections
Radiation source: fine-focus sealed tube5978 reflections with I > 2σ(I)
graphiteRint = 0.053
[var phi] and ω scansθmax = 30.1°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→7
Tmin = 0.948, Tmax = 0.996k = −21→21
35167 measured reflectionsl = −24→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0574P)2 + 0.0014P] where P = (Fo2 + 2Fc2)/3
9044 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1A0.00559 (19)0.37888 (7)0.20662 (6)0.0195 (2)
N2A0.2520 (2)0.42903 (7)−0.00279 (6)0.0212 (3)
N3A0.3721 (2)0.48394 (8)0.10399 (7)0.0222 (3)
C1A0.0532 (2)0.38179 (8)0.12384 (8)0.0186 (3)
C2A−0.0998 (2)0.34139 (8)0.08381 (8)0.0205 (3)
H2AA−0.22220.31340.11250.025*
C3A−0.0752 (2)0.34166 (9)0.00250 (8)0.0218 (3)
H3AA−0.17560.3130−0.02380.026*
C4A0.1050 (2)0.38634 (9)−0.03762 (8)0.0232 (3)
H4AA0.12520.3867−0.09230.028*
C5A0.2287 (2)0.42889 (8)0.07678 (8)0.0191 (3)
C6A0.4840 (2)0.46771 (8)0.17706 (8)0.0193 (3)
H6AA0.64390.46030.16190.023*
C7A0.4611 (2)0.54539 (8)0.22395 (8)0.0192 (3)
C8A0.2748 (2)0.60103 (9)0.22205 (9)0.0247 (3)
H8AA0.16140.59160.19020.030*
C9A0.2555 (3)0.67030 (10)0.26686 (9)0.0313 (4)
H9AA0.13020.70720.26490.038*
C10A0.4230 (3)0.68456 (10)0.31460 (9)0.0332 (4)
H10A0.40960.73060.34530.040*
C11A0.6104 (3)0.63038 (10)0.31664 (9)0.0304 (4)
H11A0.72360.64020.34840.036*
C12A0.6297 (2)0.56118 (9)0.27127 (8)0.0246 (3)
H12A0.75650.52510.27260.030*
C13A0.4056 (2)0.38124 (8)0.22618 (8)0.0205 (3)
H13A0.43670.33340.19460.025*
H13B0.49180.37010.27220.025*
C14A0.1612 (2)0.38082 (8)0.25369 (8)0.0195 (3)
C15A0.0943 (2)0.37752 (8)0.33980 (8)0.0205 (3)
C16A0.2301 (3)0.41094 (9)0.39090 (8)0.0267 (3)
H16A0.36710.43540.37110.032*
C17A0.1636 (3)0.40818 (10)0.47101 (9)0.0320 (4)
H17A0.25550.43130.50430.038*
C18A−0.0384 (3)0.37134 (10)0.50151 (9)0.0314 (4)
H18A−0.08330.36980.55510.038*
C19A−0.1734 (3)0.33676 (10)0.45153 (9)0.0290 (3)
H19A−0.30870.31130.47190.035*
C20A−0.1092 (2)0.33968 (9)0.37156 (8)0.0239 (3)
H20A−0.20190.31640.33860.029*
N3B0.8455 (2)0.01768 (8)0.10185 (7)0.0262 (3)
N2B0.7478 (2)0.07525 (8)−0.02255 (7)0.0282 (3)
N1B0.52791 (19)0.14490 (7)0.17025 (6)0.0194 (2)
C1B0.5719 (2)0.14051 (9)0.08833 (8)0.0195 (3)
C2B0.4391 (2)0.19151 (9)0.03704 (8)0.0225 (3)
H2BA0.33290.22980.05700.027*
C3B0.4631 (3)0.18599 (10)−0.04335 (8)0.0261 (3)
H3BA0.37680.2210−0.07820.031*
C4B0.6190 (3)0.12694 (10)−0.07016 (9)0.0293 (3)
H4BA0.63560.1228−0.12420.035*
C5B0.7257 (2)0.08089 (9)0.05558 (8)0.0222 (3)
C6B0.9974 (2)0.04096 (8)0.15846 (8)0.0205 (3)
H6BA1.14750.04710.13100.025*
C7B1.0103 (2)−0.02950 (8)0.22919 (8)0.0190 (3)
C8B1.1982 (2)−0.03127 (9)0.27182 (8)0.0224 (3)
H8BA1.31800.00510.25280.027*
C9B1.2092 (3)−0.08657 (9)0.34246 (8)0.0271 (3)
H9BA1.3350−0.08650.37090.032*
C10B1.0341 (3)−0.14153 (9)0.37050 (9)0.0293 (4)
H10B1.0398−0.17770.41840.035*
C11B0.8500 (3)−0.14265 (9)0.32713 (9)0.0290 (3)
H11B0.7336−0.18100.34520.035*
C12B0.8372 (2)−0.08672 (9)0.25646 (8)0.0234 (3)
H12B0.7125−0.08780.22760.028*
C13B0.9294 (2)0.12981 (8)0.18612 (8)0.0205 (3)
H13C1.02260.14050.22760.025*
H13D0.95850.17590.14210.025*
C14B0.6873 (2)0.13582 (8)0.21690 (8)0.0183 (3)
C15B0.6238 (2)0.13550 (8)0.30306 (8)0.0196 (3)
C16B0.4148 (2)0.16924 (9)0.32839 (8)0.0216 (3)
H16B0.32030.19460.29100.026*
C17B0.3472 (3)0.16542 (9)0.40802 (8)0.0253 (3)
H17B0.20890.18890.42390.030*
C18B0.4845 (3)0.12670 (10)0.46429 (9)0.0286 (3)
H18B0.43740.12290.51790.034*
C19B0.6919 (3)0.09368 (10)0.44048 (9)0.0289 (3)
H19B0.78480.06780.47820.035*
C20B0.7623 (2)0.09896 (9)0.36062 (8)0.0234 (3)
H20B0.90370.07780.34530.028*
H3NA0.460 (3)0.5106 (11)0.0627 (10)0.041 (5)*
H3NB0.919 (3)−0.0178 (12)0.0692 (10)0.046 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0186 (6)0.0177 (5)0.0215 (6)0.0010 (5)−0.0010 (5)−0.0007 (4)
N2A0.0226 (6)0.0190 (5)0.0216 (6)0.0006 (5)−0.0013 (5)−0.0011 (4)
N3A0.0261 (7)0.0216 (6)0.0188 (6)−0.0059 (5)−0.0016 (5)−0.0008 (5)
C1A0.0167 (7)0.0150 (6)0.0230 (7)0.0037 (5)−0.0004 (6)0.0001 (5)
C2A0.0164 (7)0.0167 (6)0.0271 (7)0.0025 (5)0.0001 (6)0.0003 (5)
C3A0.0216 (7)0.0185 (6)0.0261 (7)0.0003 (6)−0.0059 (6)−0.0032 (5)
C4A0.0263 (8)0.0215 (7)0.0216 (7)0.0017 (6)−0.0036 (6)−0.0016 (5)
C5A0.0190 (7)0.0149 (6)0.0228 (7)0.0035 (6)−0.0011 (6)−0.0014 (5)
C6A0.0155 (7)0.0196 (6)0.0226 (7)0.0013 (5)−0.0011 (6)−0.0026 (5)
C7A0.0183 (7)0.0188 (6)0.0194 (7)−0.0012 (6)0.0011 (6)0.0002 (5)
C8A0.0206 (7)0.0251 (7)0.0290 (8)0.0025 (6)−0.0033 (6)−0.0049 (6)
C9A0.0251 (8)0.0272 (8)0.0422 (9)0.0028 (7)0.0018 (7)−0.0104 (7)
C10A0.0332 (9)0.0281 (8)0.0405 (9)−0.0039 (7)0.0044 (8)−0.0163 (7)
C11A0.0281 (8)0.0317 (8)0.0330 (8)−0.0067 (7)−0.0043 (7)−0.0085 (6)
C12A0.0204 (7)0.0237 (7)0.0299 (8)−0.0003 (6)−0.0043 (6)−0.0026 (6)
C13A0.0188 (7)0.0189 (6)0.0235 (7)0.0019 (6)−0.0016 (6)−0.0023 (5)
C14A0.0197 (7)0.0144 (6)0.0240 (7)0.0020 (5)−0.0011 (6)−0.0013 (5)
C15A0.0205 (7)0.0172 (6)0.0228 (7)0.0036 (6)−0.0018 (6)0.0001 (5)
C16A0.0269 (8)0.0267 (7)0.0262 (8)−0.0027 (7)−0.0012 (7)−0.0019 (6)
C17A0.0376 (9)0.0333 (8)0.0257 (8)−0.0031 (8)−0.0036 (7)−0.0050 (6)
C18A0.0374 (9)0.0333 (8)0.0217 (7)0.0016 (7)0.0034 (7)−0.0011 (6)
C19A0.0258 (8)0.0308 (8)0.0277 (8)−0.0001 (7)0.0030 (7)0.0033 (6)
C20A0.0211 (7)0.0242 (7)0.0254 (7)0.0026 (6)−0.0032 (6)0.0006 (6)
N3B0.0332 (8)0.0238 (6)0.0228 (6)0.0116 (6)−0.0083 (6)−0.0059 (5)
N2B0.0310 (7)0.0317 (7)0.0227 (6)0.0113 (6)−0.0060 (6)−0.0056 (5)
N1B0.0208 (6)0.0163 (5)0.0210 (6)0.0014 (5)−0.0024 (5)−0.0019 (4)
C1B0.0163 (7)0.0203 (6)0.0214 (7)−0.0002 (6)−0.0007 (6)−0.0013 (5)
C2B0.0192 (7)0.0228 (7)0.0256 (7)0.0032 (6)−0.0026 (6)−0.0035 (6)
C3B0.0241 (8)0.0290 (7)0.0249 (7)0.0059 (6)−0.0057 (6)−0.0011 (6)
C4B0.0319 (9)0.0366 (8)0.0199 (7)0.0097 (7)−0.0051 (7)−0.0048 (6)
C5B0.0218 (7)0.0213 (6)0.0235 (7)0.0022 (6)−0.0041 (6)−0.0025 (5)
C6B0.0189 (7)0.0209 (6)0.0210 (7)0.0035 (6)−0.0014 (6)−0.0011 (5)
C7B0.0191 (7)0.0166 (6)0.0214 (7)0.0031 (6)0.0004 (6)−0.0042 (5)
C8B0.0201 (7)0.0206 (6)0.0264 (7)0.0019 (6)−0.0018 (6)−0.0034 (5)
C9B0.0270 (8)0.0277 (7)0.0266 (8)0.0091 (7)−0.0063 (7)−0.0031 (6)
C10B0.0374 (9)0.0223 (7)0.0258 (8)0.0087 (7)0.0008 (7)0.0025 (6)
C11B0.0305 (9)0.0193 (7)0.0354 (8)−0.0026 (6)0.0066 (7)−0.0020 (6)
C12B0.0211 (7)0.0197 (6)0.0297 (8)0.0017 (6)−0.0011 (6)−0.0048 (6)
C13B0.0183 (7)0.0181 (6)0.0242 (7)0.0001 (6)−0.0030 (6)0.0011 (5)
C14B0.0187 (7)0.0131 (6)0.0230 (7)0.0017 (5)−0.0024 (6)−0.0013 (5)
C15B0.0209 (7)0.0148 (6)0.0231 (7)−0.0012 (6)−0.0025 (6)−0.0027 (5)
C16B0.0215 (7)0.0196 (6)0.0235 (7)0.0010 (6)−0.0041 (6)−0.0013 (5)
C17B0.0228 (8)0.0265 (7)0.0267 (7)0.0030 (6)−0.0014 (6)−0.0044 (6)
C18B0.0333 (9)0.0318 (8)0.0200 (7)0.0057 (7)−0.0004 (7)−0.0031 (6)
C19B0.0320 (9)0.0311 (8)0.0242 (7)0.0092 (7)−0.0078 (7)−0.0039 (6)
C20B0.0212 (7)0.0238 (7)0.0255 (7)0.0048 (6)−0.0035 (6)−0.0042 (6)

Geometric parameters (Å, °)

N1A—C14A1.2838 (17)N3B—C5B1.3933 (17)
N1A—C1A1.4134 (16)N3B—C6B1.4632 (18)
N2A—C4A1.3309 (17)N3B—H3NB0.910 (18)
N2A—C5A1.3535 (16)N2B—C4B1.3391 (18)
N3A—C5A1.3665 (17)N2B—C5B1.3428 (17)
N3A—C6A1.4553 (17)N1B—C14B1.2875 (16)
N3A—H3NA0.905 (17)N1B—C1B1.4113 (16)
C1A—C2A1.3895 (19)C1B—C2B1.3857 (19)
C1A—C5A1.4207 (19)C1B—C5B1.4157 (19)
C2A—C3A1.3828 (19)C2B—C3B1.3810 (19)
C2A—H2AA0.93C2B—H2BA0.93
C3A—C4A1.377 (2)C3B—C4B1.378 (2)
C3A—H3AA0.93C3B—H3BA0.93
C4A—H4AA0.93C4B—H4BA0.93
C6A—C7A1.5151 (18)C6B—C7B1.5177 (18)
C6A—C13A1.5349 (18)C6B—C13B1.5330 (18)
C6A—H6AA0.98C6B—H6BA0.98
C7A—C12A1.3888 (19)C7B—C12B1.3858 (19)
C7A—C8A1.3894 (19)C7B—C8B1.3888 (19)
C8A—C9A1.3833 (19)C8B—C9B1.3865 (19)
C8A—H8AA0.93C8B—H8BA0.93
C9A—C10A1.383 (2)C9B—C10B1.377 (2)
C9A—H9AA0.93C9B—H9BA0.93
C10A—C11A1.381 (2)C10B—C11B1.381 (2)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.388 (2)C11B—C12B1.393 (2)
C11A—H11A0.93C11B—H11B0.93
C12A—H12A0.93C12B—H12B0.93
C13A—C14A1.5017 (19)C13B—C14B1.5075 (19)
C13A—H13A0.97C13B—H13C0.97
C13A—H13B0.97C13B—H13D0.97
C14A—C15A1.4858 (18)C14B—C15B1.4878 (18)
C15A—C16A1.3921 (19)C15B—C20B1.3924 (19)
C15A—C20A1.401 (2)C15B—C16B1.4012 (19)
C16A—C17A1.388 (2)C16B—C17B1.3801 (19)
C16A—H16A0.93C16B—H16B0.93
C17A—C18A1.382 (2)C17B—C18B1.383 (2)
C17A—H17A0.93C17B—H17B0.93
C18A—C19A1.384 (2)C18B—C19B1.382 (2)
C18A—H18A0.93C18B—H18B0.93
C19A—C20A1.3826 (19)C19B—C20B1.3858 (19)
C19A—H19A0.93C19B—H19B0.93
C20A—H20A0.93C20B—H20B0.93
C14A—N1A—C1A121.82 (12)C5B—N3B—C6B122.33 (11)
C4A—N2A—C5A119.50 (12)C5B—N3B—H3NB108.2 (11)
C5A—N3A—C6A126.75 (11)C6B—N3B—H3NB109.2 (11)
C5A—N3A—H3NA109.3 (10)C4B—N2B—C5B118.79 (13)
C6A—N3A—H3NA113.2 (11)C14B—N1B—C1B120.74 (12)
C2A—C1A—N1A116.30 (12)C2B—C1B—N1B117.63 (12)
C2A—C1A—C5A116.85 (12)C2B—C1B—C5B117.56 (12)
N1A—C1A—C5A126.54 (12)N1B—C1B—C5B124.45 (12)
C3A—C2A—C1A121.89 (13)C3B—C2B—C1B120.67 (13)
C3A—C2A—H2AA119.1C3B—C2B—H2BA119.7
C1A—C2A—H2AA119.1C1B—C2B—H2BA119.7
C4A—C3A—C2A116.85 (13)C4B—C3B—C2B117.80 (13)
C4A—C3A—H3AA121.6C4B—C3B—H3BA121.1
C2A—C3A—H3AA121.6C2B—C3B—H3BA121.1
N2A—C4A—C3A123.86 (13)N2B—C4B—C3B123.50 (13)
N2A—C4A—H4AA118.1N2B—C4B—H4BA118.2
C3A—C4A—H4AA118.1C3B—C4B—H4BA118.2
N2A—C5A—N3A113.73 (12)N2B—C5B—N3B115.02 (12)
N2A—C5A—C1A120.92 (12)N2B—C5B—C1B121.65 (12)
N3A—C5A—C1A125.04 (12)N3B—C5B—C1B122.96 (12)
N3A—C6A—C7A111.98 (11)N3B—C6B—C7B112.44 (11)
N3A—C6A—C13A110.97 (11)N3B—C6B—C13B110.60 (11)
C7A—C6A—C13A112.71 (11)C7B—C6B—C13B110.36 (11)
N3A—C6A—H6AA106.9N3B—C6B—H6BA107.8
C7A—C6A—H6AA106.9C7B—C6B—H6BA107.8
C13A—C6A—H6AA106.9C13B—C6B—H6BA107.8
C12A—C7A—C8A118.64 (12)C12B—C7B—C8B118.99 (12)
C12A—C7A—C6A119.28 (12)C12B—C7B—C6B123.16 (13)
C8A—C7A—C6A122.08 (12)C8B—C7B—C6B117.63 (12)
C9A—C8A—C7A120.96 (14)C9B—C8B—C7B120.76 (13)
C9A—C8A—H8AA119.5C9B—C8B—H8BA119.6
C7A—C8A—H8AA119.5C7B—C8B—H8BA119.6
C10A—C9A—C8A119.83 (15)C10B—C9B—C8B120.02 (14)
C10A—C9A—H9AA120.1C10B—C9B—H9BA120.0
C8A—C9A—H9AA120.1C8B—C9B—H9BA120.0
C11A—C10A—C9A119.97 (14)C9B—C10B—C11B119.70 (13)
C11A—C10A—H10A120.0C9B—C10B—H10B120.2
C9A—C10A—H10A120.0C11B—C10B—H10B120.2
C10A—C11A—C12A120.03 (15)C10B—C11B—C12B120.51 (14)
C10A—C11A—H11A120.0C10B—C11B—H11B119.7
C12A—C11A—H11A120.0C12B—C11B—H11B119.7
C11A—C12A—C7A120.56 (14)C7B—C12B—C11B119.94 (14)
C11A—C12A—H12A119.7C7B—C12B—H12B120.0
C7A—C12A—H12A119.7C11B—C12B—H12B120.0
C14A—C13A—C6A113.96 (11)C14B—C13B—C6B114.07 (11)
C14A—C13A—H13A108.8C14B—C13B—H13C108.7
C6A—C13A—H13A108.8C6B—C13B—H13C108.7
C14A—C13A—H13B108.8C14B—C13B—H13D108.7
C6A—C13A—H13B108.8C6B—C13B—H13D108.7
H13A—C13A—H13B107.7H13C—C13B—H13D107.6
N1A—C14A—C15A117.83 (12)N1B—C14B—C15B117.11 (12)
N1A—C14A—C13A123.05 (12)N1B—C14B—C13B122.04 (12)
C15A—C14A—C13A119.03 (12)C15B—C14B—C13B120.80 (12)
C16A—C15A—C20A118.30 (13)C20B—C15B—C16B118.03 (12)
C16A—C15A—C14A121.62 (13)C20B—C15B—C14B122.05 (13)
C20A—C15A—C14A120.07 (12)C16B—C15B—C14B119.86 (12)
C17A—C16A—C15A120.80 (14)C17B—C16B—C15B120.97 (13)
C17A—C16A—H16A119.6C17B—C16B—H16B119.5
C15A—C16A—H16A119.6C15B—C16B—H16B119.5
C18A—C17A—C16A120.34 (15)C16B—C17B—C18B120.17 (14)
C18A—C17A—H17A119.8C16B—C17B—H17B119.9
C16A—C17A—H17A119.8C18B—C17B—H17B119.9
C17A—C18A—C19A119.41 (14)C19B—C18B—C17B119.69 (14)
C17A—C18A—H18A120.3C19B—C18B—H18B120.2
C19A—C18A—H18A120.3C17B—C18B—H18B120.2
C20A—C19A—C18A120.67 (14)C18B—C19B—C20B120.29 (14)
C20A—C19A—H19A119.7C18B—C19B—H19B119.9
C18A—C19A—H19A119.7C20B—C19B—H19B119.9
C19A—C20A—C15A120.48 (14)C19B—C20B—C15B120.81 (14)
C19A—C20A—H20A119.8C19B—C20B—H20B119.6
C15A—C20A—H20A119.8C15B—C20B—H20B119.6
C14A—N1A—C1A—C2A152.11 (12)C14B—N1B—C1B—C2B−147.76 (13)
C14A—N1A—C1A—C5A−34.49 (19)C14B—N1B—C1B—C5B39.29 (19)
N1A—C1A—C2A—C3A178.31 (12)N1B—C1B—C2B—C3B−175.65 (12)
C5A—C1A—C2A—C3A4.25 (19)C5B—C1B—C2B—C3B−2.2 (2)
C1A—C2A—C3A—C4A−1.9 (2)C1B—C2B—C3B—C4B1.4 (2)
C5A—N2A—C4A—C3A0.8 (2)C5B—N2B—C4B—C3B−0.2 (2)
C2A—C3A—C4A—N2A−0.7 (2)C2B—C3B—C4B—N2B−0.2 (2)
C4A—N2A—C5A—N3A−172.10 (12)C4B—N2B—C5B—N3B172.52 (13)
C4A—N2A—C5A—C1A1.77 (19)C4B—N2B—C5B—C1B−0.7 (2)
C6A—N3A—C5A—N2A−142.34 (13)C6B—N3B—C5B—N2B127.54 (14)
C6A—N3A—C5A—C1A44.1 (2)C6B—N3B—C5B—C1B−59.4 (2)
C2A—C1A—C5A—N2A−4.16 (19)C2B—C1B—C5B—N2B1.8 (2)
N1A—C1A—C5A—N2A−177.54 (12)N1B—C1B—C5B—N2B174.79 (13)
C2A—C1A—C5A—N3A168.99 (12)C2B—C1B—C5B—N3B−170.78 (13)
N1A—C1A—C5A—N3A−4.4 (2)N1B—C1B—C5B—N3B2.2 (2)
C5A—N3A—C6A—C7A−131.74 (14)C5B—N3B—C6B—C7B149.17 (13)
C5A—N3A—C6A—C13A−4.83 (19)C5B—N3B—C6B—C13B25.30 (18)
N3A—C6A—C7A—C12A−149.95 (13)N3B—C6B—C7B—C12B−27.20 (18)
C13A—C6A—C7A—C12A84.08 (15)C13B—C6B—C7B—C12B96.80 (15)
N3A—C6A—C7A—C8A30.91 (18)N3B—C6B—C7B—C8B158.13 (12)
C13A—C6A—C7A—C8A−95.05 (15)C13B—C6B—C7B—C8B−77.86 (15)
C12A—C7A—C8A—C9A−0.7 (2)C12B—C7B—C8B—C9B−2.8 (2)
C6A—C7A—C8A—C9A178.48 (13)C6B—C7B—C8B—C9B172.11 (12)
C7A—C8A—C9A—C10A−0.2 (2)C7B—C8B—C9B—C10B1.0 (2)
C8A—C9A—C10A—C11A0.8 (2)C8B—C9B—C10B—C11B1.4 (2)
C9A—C10A—C11A—C12A−0.5 (2)C9B—C10B—C11B—C12B−1.9 (2)
C10A—C11A—C12A—C7A−0.4 (2)C8B—C7B—C12B—C11B2.2 (2)
C8A—C7A—C12A—C11A1.0 (2)C6B—C7B—C12B—C11B−172.36 (13)
C6A—C7A—C12A—C11A−178.18 (13)C10B—C11B—C12B—C7B0.1 (2)
N3A—C6A—C13A—C14A−63.00 (15)N3B—C6B—C13B—C14B52.40 (15)
C7A—C6A—C13A—C14A63.51 (15)C7B—C6B—C13B—C14B−72.66 (14)
C1A—N1A—C14A—C15A179.96 (11)C1B—N1B—C14B—C15B−176.09 (11)
C1A—N1A—C14A—C13A−3.49 (19)C1B—N1B—C14B—C13B6.60 (18)
C6A—C13A—C14A—N1A70.57 (16)C6B—C13B—C14B—N1B−74.94 (15)
C6A—C13A—C14A—C15A−112.93 (13)C6B—C13B—C14B—C15B107.84 (13)
N1A—C14A—C15A—C16A−155.81 (13)N1B—C14B—C15B—C20B158.89 (12)
C13A—C14A—C15A—C16A27.50 (18)C13B—C14B—C15B—C20B−23.76 (18)
N1A—C14A—C15A—C20A24.54 (18)N1B—C14B—C15B—C16B−18.26 (18)
C13A—C14A—C15A—C20A−152.15 (13)C13B—C14B—C15B—C16B159.09 (12)
C20A—C15A—C16A—C17A−1.1 (2)C20B—C15B—C16B—C17B−0.8 (2)
C14A—C15A—C16A—C17A179.25 (13)C14B—C15B—C16B—C17B176.51 (12)
C15A—C16A—C17A—C18A0.6 (2)C15B—C16B—C17B—C18B−1.0 (2)
C16A—C17A—C18A—C19A0.4 (2)C16B—C17B—C18B—C19B1.5 (2)
C17A—C18A—C19A—C20A−0.7 (2)C17B—C18B—C19B—C20B−0.2 (2)
C18A—C19A—C20A—C15A0.2 (2)C18B—C19B—C20B—C15B−1.6 (2)
C16A—C15A—C20A—C19A0.7 (2)C16B—C15B—C20B—C19B2.0 (2)
C14A—C15A—C20A—C19A−179.64 (13)C14B—C15B—C20B—C19B−175.17 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3A—H3NA···N2Ai0.90 (2)2.10 (2)2.9572 (17)157 (1)
N3B—H3NB···N2Bii0.91 (2)2.29 (2)3.0980 (17)148 (1)
C6A—H6AA···N1Aiii0.982.603.4316 (17)143
C2B—H2BA···Cg10.932.793.6350 (14)151
C20B—H20B···Cg20.932.793.4468 (15)129

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y, −z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2786).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Goswami, S. P., Hazra, A. & Jana, S. (2009). J. Heterocycl. Chem. In the press.
  • Landquist, J. K. (1984). Comprehensive Heterocyclic Chemistry, Vol. 1, edited by A. R. Katritzky & C. W. Rees, p. 116. Oxford: Pergamon.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smalley, R. K. (1979). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by D. Barton & W. D. Ollis. p. 600. Oxford: Pergamon.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography