PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1137–o1138.
Published online 2009 April 30. doi:  10.1107/S1600536809014767
PMCID: PMC2977809

Genistein-3′-sulfonic acid dihydrate

Abstract

In the title compound [systematic name: 5-(5,7-dihydr­oxy-4-oxo-4H-chromen­yl)-2-hydroxy­benzene­sulfonic acid dihydrate], C15H10O8S·2H2O, the benzopyran­one ring is not coplanar with the phenyl ring, the dihedral angle between them being 41.35 (3)°. No H atom was placed on the sulphonic acid group because it was not possible to distinguish between the two S=O bonds and the S—O bond. In the crystal, the mol­ecules are linked by classical O—H(...)O and C—H(...)O intra- and inter­molecular hydrogen bonds and aromatic π–π stacking inter­actions [centroid–centroid distance of 3.4523 (14) Å between the 1, 4-pyran­one rings and the benzene rings, and 3.6337 (14) Å between the benzene rings] into a supra­molecular structure.

Related literature

Genistein is an isoflavone that can be extracted from plants such as soybean, trifolium, puerarin, see: Curnow et al. (1955 [triangle]); Kaufman et al. (1997 [triangle]). For its anti-tumour, anti-arteriosclerosis and anti-bone loss properties, see: Fritz et al. (1998 [triangle]); Zhu et al. (2006 [triangle]). It can also reduce plasma lipids and kill various cancer cells without damaging normal cells, see: Fanti et al. (1998 [triangle]); Lamartiniere (2000 [triangle]). It has poor solubility in water and fat (Suo et al., 2005 [triangle]). One effective way to increase the solubility of these compounds is to involve a sulfonate group, see: Kopacz (1981 [triangle]); Pusz et al. (2001 [triangle]); Xie et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1137-scheme1.jpg

Experimental

Crystal data

  • C15H10O8S·2H2O
  • M r = 386.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1137-efi1.jpg
  • a = 7.9100 (4) Å
  • b = 8.1977 (3) Å
  • c = 14.3431 (7) Å
  • α = 73.626 (3)°
  • β = 80.346 (3)°
  • γ = 65.498 (3)°
  • V = 810.61 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 296 K
  • 0.20 × 0.20 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.952, T max = 0.988
  • 7136 measured reflections
  • 3736 independent reflections
  • 2466 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.114
  • S = 0.95
  • 3736 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014767/fl2244sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014767/fl2244Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thank the Natural Science Foundation of China (No. 20861001), the Natural Science Foundation of Jiangxi Province (No. 0620007), the Jiangxi Provincial Education Foundation (20060237) and the Gannan Normal University Foundation (No. 200409).

supplementary crystallographic information

Comment

Genistein is an isoflavone that can be extracted from plants such as soybean, trifolium, puerarin (Curnow et al. 1955; Kaufman et al., 1997). It has physiological functions of anti-tumour, anti-arteriosclerosis, anti-bone loss (Fritz et al., 1998; Zhu et al., 2006). It can also reduce plasma lipids and kill various cancer cells without damaging normal cells (Fanti et al., 1998; Lamartiniere, 2000). Nevertheless, its medical applications are restricted because of its poor solubility in water and fat (Suo et al.,2005). One effective way to increase the solubility of these compounds is to involve a sulfonate group (Kopacz, 1981; Pusz et al., 2001; Xie et al. 2002).

We present here the structure of (I, Fig. 1), a new derivative of Genistein. In (I) the molecules are linked by classic O—H···O and C—H···O intra- and intermolecular hydrogen bonds (Table 1). Adjacent benzopyranone rings are aligned in a parallel and alternatively inverse fashion, with a centroid-centroid distance of 3.4523 (14)Å between 1, 4-pyranone rings and benzene rings, and 3.6337 (14)Å between the benzene rings (Table 2), indicating significant stacking interactions that form columns running along the a axis. The hydrogen bonding and π-π stacking interactions extend the structure into a 3-D supramolecular structure (Fig. 2 and Fig. 3).

Experimental

In a 100 ml flask are placed 40 ml 98% sulfuric acid and 10 g (37 mmol) genistein with stirrer. The resulting mixture is stirred at room temperature for 6 h. The reaction mixture is carefully diluted by addition of 40 ml ice water. The resulting yellow solid is filtered, and recrystallized from 50 ml of 90% acetonitrile to give 9.1–11 g (70–85%) of the title compound yellow crystals.

Refinement

The analysis indicated that all three O atoms of the sulfonate group are disordered and therefore the refinement did not converge satisfactorily. Two sulfonate groups, with an occupancies of 0.53740 (O6A, O7A, O8A) and 0.46260(O6B, O7B, O8B), respectively, could be detected and refined. No H atom was added to the sulfonate group because it was not possible to distinguish between the 2 S=O bonds and the S—O bond. The disorder in the SO3 group was treated with the tools available in SHELXL97 (Sheldrick, 2008).

H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and were included in the refinement in the riding-model approximation. The H atoms of water molecules were located in difference Fourier maps and then idealized and treated as riding, with O—H = 0.82–0.85 Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The hydrogen-bonding motif in (I). Dashed lines indicate the hydrogen bonds.
Fig. 3.
View of the π-π stacking for compound (I) along the b axis.

Crystal data

C15H10O8S·2H2OV = 810.61 (6) Å3
Mr = 386.31Z = 2
Triclinic, P1F(000) = 398
Hall symbol: -P 1Dx = 1.579 Mg m3
a = 7.9100 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1977 (3) Åθ = 2.8–27.6°
c = 14.3431 (7) ŵ = 0.26 mm1
α = 73.626 (3)°T = 296 K
β = 80.346 (3)°Block, yellow
γ = 65.498 (3)°0.20 × 0.20 × 0.05 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3736 independent reflections
Radiation source: fine-focus sealed tube2466 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→10
Tmin = 0.952, Tmax = 0.988k = −10→10
7136 measured reflectionsl = −16→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.95w = 1/[σ2(Fo2) + (0.0499P)2] where P = (Fo2 + 2Fc2)/3
3736 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.91573 (8)0.62831 (8)0.13396 (4)0.02871 (17)
O10.3853 (2)0.9816 (2)0.33901 (11)0.0349 (4)
O20.2966 (2)1.1865 (2)0.46121 (12)0.0463 (5)
H2A0.33711.15350.41010.056*
O30.0060 (2)0.9940 (2)0.76568 (11)0.0441 (5)
H3A0.03261.06990.78040.053*
O40.1972 (2)0.62379 (19)0.54241 (11)0.0325 (4)
O50.7199 (2)0.4397 (2)0.05141 (12)0.0483 (5)
H5A0.83240.41280.04920.058*
C10.3351 (3)0.8670 (3)0.40347 (15)0.0263 (5)
C20.2545 (3)0.9026 (3)0.49667 (15)0.0246 (5)
C30.2355 (3)1.0616 (3)0.52404 (16)0.0296 (5)
C40.1563 (3)1.0929 (3)0.61293 (17)0.0339 (6)
H4A0.14651.19760.63030.041*
C50.0900 (3)0.9663 (3)0.67758 (16)0.0305 (5)
C60.1018 (3)0.8113 (3)0.65325 (16)0.0299 (5)
H6A0.05500.72900.69590.036*
C70.1848 (3)0.7812 (3)0.56408 (16)0.0263 (5)
C80.2829 (3)0.5863 (3)0.45676 (16)0.0313 (5)
H8A0.29440.47620.44480.038*
C90.3528 (3)0.6939 (3)0.38735 (15)0.0261 (5)
C100.4469 (3)0.6336 (3)0.29699 (15)0.0265 (5)
C110.3792 (3)0.5469 (3)0.25092 (17)0.0352 (6)
H11A0.26930.53040.27530.042*
C120.4730 (3)0.4846 (3)0.16923 (18)0.0392 (6)
H12A0.42490.42770.13910.047*
C130.6385 (3)0.5062 (3)0.13165 (16)0.0317 (5)
C140.7058 (3)0.5965 (3)0.17563 (15)0.0250 (5)
C150.6094 (3)0.6585 (3)0.25784 (15)0.0259 (5)
H15A0.65540.71810.28720.031*
O1W0.6658 (3)0.1139 (2)0.02597 (15)0.0646 (6)
H30.76770.02880.04700.078*
H40.68000.21400.01910.078*
O2W0.3261 (3)0.0875 (3)0.13170 (15)0.0775 (7)
H10.42610.09880.10450.093*
H20.23630.18630.13980.093*
O6A0.9142 (16)0.6736 (12)0.0261 (8)0.0346 (14)0.54
O7A1.067 (2)0.456 (2)0.1681 (9)0.043 (2)0.54
O8A0.8999 (11)0.7821 (10)0.1651 (4)0.0369 (13)0.54
O6B0.899 (2)0.7323 (15)0.0381 (10)0.067 (3)0.46
O7B1.059 (2)0.450 (3)0.1480 (12)0.069 (5)0.46
O8B0.9427 (13)0.7255 (13)0.2012 (5)0.061 (3)0.46

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0283 (3)0.0327 (3)0.0301 (3)−0.0149 (3)0.0043 (2)−0.0138 (3)
O10.0453 (10)0.0311 (9)0.0315 (9)−0.0208 (8)0.0095 (7)−0.0101 (7)
O20.0694 (13)0.0418 (10)0.0434 (11)−0.0385 (10)0.0200 (9)−0.0212 (8)
O30.0580 (12)0.0550 (11)0.0329 (10)−0.0313 (10)0.0116 (8)−0.0246 (8)
O40.0455 (10)0.0261 (8)0.0295 (9)−0.0185 (8)0.0071 (7)−0.0101 (7)
O50.0406 (10)0.0809 (13)0.0468 (11)−0.0340 (10)0.0169 (8)−0.0454 (10)
C10.0241 (11)0.0258 (11)0.0273 (12)−0.0086 (10)−0.0008 (9)−0.0061 (10)
C20.0267 (11)0.0224 (11)0.0249 (12)−0.0098 (9)0.0003 (9)−0.0068 (9)
C30.0311 (12)0.0291 (12)0.0326 (13)−0.0152 (10)0.0024 (10)−0.0105 (10)
C40.0380 (13)0.0367 (13)0.0367 (14)−0.0181 (11)0.0011 (10)−0.0197 (11)
C50.0292 (12)0.0394 (13)0.0235 (12)−0.0107 (11)0.0007 (9)−0.0133 (10)
C60.0332 (13)0.0296 (12)0.0269 (12)−0.0140 (10)0.0017 (9)−0.0056 (10)
C70.0267 (12)0.0236 (11)0.0287 (12)−0.0085 (10)−0.0020 (9)−0.0080 (10)
C80.0374 (13)0.0267 (12)0.0318 (13)−0.0123 (11)0.0066 (10)−0.0154 (10)
C90.0250 (11)0.0253 (11)0.0280 (12)−0.0090 (10)0.0009 (9)−0.0091 (10)
C100.0275 (11)0.0263 (11)0.0253 (12)−0.0090 (10)0.0012 (9)−0.0093 (9)
C110.0296 (13)0.0463 (14)0.0379 (14)−0.0203 (12)0.0054 (10)−0.0180 (12)
C120.0363 (14)0.0562 (16)0.0432 (15)−0.0268 (13)0.0056 (11)−0.0299 (13)
C130.0318 (13)0.0403 (13)0.0272 (12)−0.0145 (11)0.0030 (9)−0.0163 (11)
C140.0239 (11)0.0253 (11)0.0257 (12)−0.0096 (9)−0.0003 (9)−0.0064 (9)
C150.0257 (11)0.0262 (11)0.0272 (12)−0.0084 (10)−0.0033 (9)−0.0101 (9)
O1W0.0601 (13)0.0449 (11)0.0873 (16)−0.0203 (10)−0.0079 (11)−0.0116 (11)
O2W0.0639 (15)0.0834 (15)0.0737 (16)−0.0237 (13)0.0042 (11)−0.0139 (12)
O6A0.036 (2)0.045 (3)0.023 (2)−0.015 (3)0.0032 (16)−0.011 (2)
O7A0.029 (3)0.051 (6)0.043 (3)−0.018 (3)−0.009 (2)0.005 (3)
O8A0.048 (3)0.048 (3)0.035 (3)−0.031 (2)0.003 (2)−0.024 (2)
O6B0.056 (5)0.095 (9)0.041 (6)−0.041 (6)0.002 (4)0.014 (5)
O7B0.025 (5)0.032 (5)0.129 (13)0.000 (4)0.019 (6)−0.018 (7)
O8B0.051 (5)0.123 (8)0.053 (5)−0.058 (5)0.022 (3)−0.065 (5)

Geometric parameters (Å, °)

S1—O6B1.394 (14)C4—C51.399 (3)
S1—O8A1.404 (7)C4—H4A0.9300
S1—O7B1.412 (16)C5—C61.374 (3)
S1—O7A1.438 (14)C6—C71.375 (3)
S1—O6A1.487 (11)C6—H6A0.9300
S1—O8B1.501 (8)C8—C91.342 (3)
S1—C141.766 (2)C8—H8A0.9300
O1—C11.262 (2)C9—C101.487 (3)
O2—C31.356 (3)C10—C151.385 (3)
O2—H2A0.8207C10—C111.389 (3)
O3—C51.358 (2)C11—C121.384 (3)
O3—H3A0.8205C11—H11A0.9300
O4—C81.350 (2)C12—C131.392 (3)
O4—C71.372 (2)C12—H12A0.9300
O5—C131.360 (2)C13—C141.390 (3)
O5—H5A0.8206C14—C151.395 (3)
C1—C21.435 (3)C15—H15A0.9300
C1—C91.447 (3)O1W—H30.8508
C2—C71.401 (3)O1W—H40.8502
C2—C31.408 (3)O2W—H10.8500
C3—C41.366 (3)O2W—H20.8500
O8A—S1—O7A117.5 (7)C6—C5—C4121.3 (2)
O8A—S1—O6A110.1 (4)C5—C6—C7118.1 (2)
O7A—S1—O6A110.5 (6)C5—C6—H6A121.0
O8A—S1—C14105.6 (3)C7—C6—H6A121.0
O7A—S1—C14107.8 (7)O4—C7—C6116.80 (19)
O6A—S1—C14104.3 (5)O4—C7—C2120.09 (19)
O6B—S1—O7B115.3 (8)C6—C7—C2123.1 (2)
O6B—S1—O8B112.3 (5)C9—C8—O4125.7 (2)
O7B—S1—O8B107.7 (8)C9—C8—H8A117.2
O6B—S1—C14108.5 (6)O4—C8—H8A117.2
O8A—S1—C14105.6 (3)C8—C9—C1118.4 (2)
O7B—S1—C14106.3 (9)C8—C9—C10119.97 (19)
O7A—S1—C14107.8 (7)C1—C9—C10121.67 (18)
O6A—S1—C14104.3 (5)C15—C10—C11118.0 (2)
O8B—S1—C14106.2 (4)C15—C10—C9120.2 (2)
C3—O2—H2A109.4C11—C10—C9121.7 (2)
C5—O3—H3A109.5C12—C11—C10120.9 (2)
C8—O4—C7118.66 (16)C12—C11—H11A119.5
C13—O5—H5A109.4C10—C11—H11A119.5
O1—C1—C2121.64 (19)C11—C12—C13120.7 (2)
O1—C1—C9122.13 (19)C11—C12—H12A119.6
C2—C1—C9116.23 (18)C13—C12—H12A119.6
C7—C2—C3116.69 (19)O5—C13—C14124.9 (2)
C7—C2—C1120.75 (19)O5—C13—C12116.1 (2)
C3—C2—C1122.53 (19)C14—C13—C12119.0 (2)
O2—C3—C4119.2 (2)C13—C14—C15119.4 (2)
O2—C3—C2119.6 (2)C13—C14—S1122.28 (16)
C4—C3—C2121.2 (2)C15—C14—S1118.27 (17)
C3—C4—C5119.6 (2)C10—C15—C14121.9 (2)
C3—C4—H4A120.2C10—C15—H15A119.1
C5—C4—H4A120.2C14—C15—H15A119.1
O3—C5—C6117.1 (2)H3—O1W—H4105.1
O3—C5—C4121.6 (2)H1—O2W—H2116.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H1···O1W0.852.072.915 (3)173
O2W—H2···O7Ai0.852.172.999 (15)165
O2W—H2···O6Aii0.852.582.903 (13)104
O2—H2A···O10.821.852.580 (2)148
O1W—H3···O8Aiii0.852.232.968 (7)146
O3—H3A···O8Aiv0.821.892.705 (8)171
O1W—H4···O50.852.183.000 (2)162
O5—H5A···O6A0.822.402.835 (12)114
O5—H5A···O6Av0.822.052.784 (14)148
C6—H6A···O7Avi0.932.443.356 (15)169
C8—H8A···O2iii0.932.313.217 (3)164
C15—H15A···O10.932.522.944 (3)108
C15—H15A···O8A0.932.502.868 (9)104

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+1; (v) −x+2, −y+1, −z; (vi) −x+1, −y+1, −z+1.

Table 2 π-π interactions (Å, °)

CgCgαDCCτ
Cg1Cg2i1.383.4524 (14)15.63
Cg2Cg2i0.033.6336 (14)24.54

Symmetry code: (i) -x, 2-y, 1-z. α is dihedral angle between the planes, DCC is the length of the CC vector (centroid–centroid), τ is the angle(s) subtended by the plane normal(s) to CC. Cg1 is the centroid of ring O4, C1, C2, C7–C9 and Cg2 is the centroid of ring C2–C7.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2244).

References

  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Curnow, D. H. & Rossiter, R. C. (1955). Aust. J. Exp. Biol. Med. Sci 33, 243–248. [PubMed]
  • Fanti, P., Monier-Faugere, M. C., Geng, Z., Schmidt, J., Morris, P. E., Cohen, D. & Malluche, H. H. (1998). Osteoporos Int.8, 274–281. [PubMed]
  • Fritz, W., Coward, L., Wang, J. & Lamartiniere, C. (1998). Carcinogenesis, 19, 2151–2158. [PubMed]
  • Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J. & Hoyt, J. E. (1997). J. Altern. Complement Med.3, 7–12. [PubMed]
  • Kopacz, M. (1981). Pol. J. Chem.55, 227–229.
  • Lamartiniere, C. A. (2000). Am. J. Clin. Nutr.71, 1705S–1707S. [PubMed]
  • Pusz, J., Nitka, B. & Wolowiec, S. (2001). Pol. J. Chem.75, 795–801.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suo, Z. R., Zhang, Z. T. & Zheng, J. B. (2005). Chin. J. Appl. Chem.22, 1083–1086.
  • Xie, Y. R., Xiong, R. G., Xue, X., Chen, X. T., Xue, Z. L. & You, X. Z. (2002). Inorg. Chem.41, 3323–3326. [PubMed]
  • Zhu, G. C., Ding, Z., Chen, Z. S., Dong, C., Guo, H. & Chen, B. C. (2006). Transpl. Proc.38, 3307–3308. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography