PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1135.
Published online 2009 April 25. doi:  10.1107/S1600536809014378
PMCID: PMC2977807

(E)-2-{3-[4-(Diphenyl­amino)styr­yl]-5,5-dimethyl­cyclo­hex-2-enyl­idene}­malono­nitrile

Abstract

In the title compound, C31H27N3, the cyclo­hexene ring has an envelope configuration. In the crystal structure, there is an 34 Å3 void around the inversion center, but the low electron density (0.13 e Å−3) in the difference Fourier map suggests no solvent mol­ecule occupying this void. No hydrogen bonding is found in the crystal structure.

Related literature

For background to organic compounds with light emitting properties, see: Tang et al. (1998 [triangle]); Li et al. (2003 [triangle]); Hye et al. (2004 [triangle]). For the synthesis, see: Lemke (1974 [triangle]); Tao & Miyata (2001 [triangle]). For related crystal structures, see: Kia et al. (2009 [triangle]); Ju et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1135-scheme1.jpg

Experimental

Crystal data

  • C31H27N3
  • M r = 441.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1135-efi1.jpg
  • a = 13.239 (5) Å
  • b = 16.757 (8) Å
  • c = 11.886 (3) Å
  • β = 104.073 (5)°
  • V = 2557.7 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.48 × 0.19 × 0.16 mm

Data collection

  • Bruker SMART area-detector diffractometer
  • Absorption correction: none
  • 20681 measured reflections
  • 5879 independent reflections
  • 3554 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.167
  • S = 0.92
  • 5879 reflections
  • 309 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014378/xu2505sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014378/xu2505Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant Nos. 50590403, 50402018 and 50603011).

supplementary crystallographic information

Comment

The organic compounds with donor-π-acceptor (D-π-A) structure have special light-emitting properties, and show potential application in organic light-emitting diodes (Tang et al., 1998; Hye et al., 2004). However, these molecules easily aggregate, which usually reduces their fluorescence intensity (Li et al., 2003). Therefore, it is important to study their intermolecular interaction in the solid state. Recently we synthesized the title compound and studied its crystal structure.

The molecular structure is shown in Fig. 1. Three benzenes of triphenyl amine group show a three-bladed propeller configuration due to repulsion force. The bond lengths of C13—N1 are shorter than the single C—N distance (1.47–1.50 Å) and longer than double C=N bond distance (1.34–1.38 Å), which is due to the conjugation of p-π in triphenyl amine group. Because of long conjugation length, all atoms are roughly coplanar (Kia et al., 2009). However, the cyclohexene group shows an envelope configuration due to its ring tension, which atoms are partly out of the plane (Ju et al., 2006). The triphenyl amine and cyclohexene groups could hold back farther gather of these molecules in the solid state, which is due to their non-coplanar conjugation. No hydrogen bonding is found in the crystal structure (Fig. 2).

Experimental

Hexahydropyridine (1 ml) and acetic acid (2 ml) were respectively added dropwise to a stirred benzene (100 ml) solution with 4-diphenylamino-benzaldehyde (1.1 g, 4 mmol) and 2-(3,5,5-Trimethylcyclohex-2-enylidene)-malononitrile (0.92 g, 5 mmol). The mixture was stirred at room temperature for 1 h, then separated water at refluxing temperature for another 5 h. Cooled to room temperature, the title compound was gotten (Lemke, 1974; Tao & Miyata, 2001). Single crystal suitable for X-ray diffraction analysis were obtained by slow evaporation of its ethanol saturated solution at room temperature.

Refinement

All H atoms were positioned geometrically, and allowed to ride on their parent atom with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene). Uiso(H) = 1.5Ueq(C) for methyl group and 1.2Ueq(C) for others.

Figures

Fig. 1.
The molecular structure of the molecular structure of (I) showing the atom labels. Displacement ellipsoids are shown at the 50%.
Fig. 2.
The packing of (I), viewed down the b axis. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C31H27N3F(000) = 936
Mr = 441.56Dx = 1.147 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 962 reflections
a = 13.239 (5) Åθ = 2.4–20.0°
b = 16.757 (8) ŵ = 0.07 mm1
c = 11.886 (3) ÅT = 293 K
β = 104.073 (5)°Block, red
V = 2557.7 (17) Å30.48 × 0.19 × 0.16 mm
Z = 4

Data collection

Bruker SMART area-detector diffractometer3554 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
graphiteθmax = 27.5°, θmin = 1.6°
[var phi] and ω scansh = −17→17
20681 measured reflectionsk = −21→20
5879 independent reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 0.92w = 1/[σ2(Fo2) + (0.1P)2 + 0.187P] where P = (Fo2 + 2Fc2)/3
5879 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma (F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.81570 (11)0.18274 (8)0.93407 (11)0.0627 (4)
N20.43530 (17)0.55197 (11)0.20566 (18)0.1061 (6)
N30.21605 (14)0.45416 (10)−0.09927 (15)0.0845 (5)
C10.7581 (2)0.01018 (13)1.1028 (2)0.0974 (7)
H10.7009−0.01861.11310.117*
C20.8549 (3)−0.01085 (14)1.1632 (2)0.1187 (10)
H20.8641−0.05341.21480.142*
C30.9377 (2)0.03051 (15)1.1477 (2)0.1226 (10)
H31.00430.01631.18910.147*
C40.92488 (17)0.09351 (13)1.07133 (19)0.0943 (7)
H40.98300.12131.06150.113*
C50.82738 (14)0.11594 (10)1.00942 (13)0.0585 (4)
C60.74278 (16)0.07411 (11)1.02576 (16)0.0741 (5)
H60.67580.08840.98560.089*
C70.86935 (13)0.28927 (10)1.07559 (14)0.0600 (4)
H70.82850.26691.12090.072*
C80.92347 (14)0.35847 (11)1.11063 (15)0.0692 (5)
H80.91910.38281.17960.083*
C90.98393 (15)0.39192 (11)1.04424 (17)0.0719 (5)
H91.02050.43881.06820.086*
C100.99010 (14)0.35617 (12)0.94293 (16)0.0742 (5)
H101.03040.37910.89750.089*
C110.93693 (14)0.28622 (11)0.90749 (15)0.0670 (5)
H110.94250.26160.83920.080*
C120.87536 (12)0.25291 (9)0.97371 (13)0.0531 (4)
C130.73979 (12)0.18623 (9)0.82857 (12)0.0521 (4)
C140.69523 (13)0.25939 (9)0.78731 (13)0.0543 (4)
H140.71340.30510.83210.065*
C150.62532 (12)0.26470 (9)0.68204 (14)0.0532 (4)
H150.59750.31430.65630.064*
C160.59430 (11)0.19754 (9)0.61181 (13)0.0504 (4)
C170.63661 (12)0.12448 (10)0.65608 (13)0.0571 (4)
H170.61580.07840.61310.069*
C180.70818 (13)0.11848 (10)0.76140 (14)0.0578 (4)
H180.73550.06890.78780.069*
C190.52268 (12)0.20214 (10)0.49796 (13)0.0533 (4)
H190.49780.15410.46260.064*
C200.48912 (12)0.26930 (10)0.43923 (14)0.0552 (4)
H200.51410.31710.47530.066*
C210.41880 (11)0.27527 (9)0.32670 (13)0.0501 (4)
C220.40255 (12)0.34749 (9)0.27357 (13)0.0549 (4)
H220.43570.39180.31310.066*
C230.33747 (12)0.35870 (9)0.16069 (13)0.0512 (4)
C240.28127 (13)0.28808 (9)0.09855 (13)0.0561 (4)
H24A0.32100.26710.04650.067*
H24B0.21440.30560.05150.067*
C250.26297 (12)0.22075 (9)0.17857 (13)0.0520 (4)
C260.36565 (12)0.20259 (9)0.26656 (14)0.0545 (4)
H26A0.35210.16600.32430.065*
H26B0.41230.17610.22690.065*
C270.17984 (13)0.24505 (11)0.24035 (16)0.0686 (5)
H27A0.11630.25690.18400.103*
H27B0.20260.29150.28690.103*
H27C0.16810.20210.28910.103*
C280.22779 (15)0.14665 (11)0.10523 (16)0.0787 (6)
H28A0.28130.13070.06790.118*
H28B0.16510.15840.04750.118*
H28C0.21480.10420.15410.118*
C290.32897 (13)0.43195 (9)0.10715 (14)0.0590 (4)
C300.38730 (16)0.49914 (11)0.16151 (17)0.0730 (5)
C310.26565 (15)0.44413 (10)−0.00723 (17)0.0649 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0691 (9)0.0547 (8)0.0565 (8)−0.0110 (7)−0.0001 (7)0.0077 (6)
N20.1275 (16)0.0607 (11)0.1231 (15)−0.0240 (11)0.0169 (12)−0.0041 (10)
N30.1009 (13)0.0683 (11)0.0790 (11)−0.0048 (9)0.0118 (9)0.0167 (8)
C10.141 (2)0.0771 (15)0.0818 (15)−0.0301 (15)0.0420 (15)0.0037 (11)
C20.190 (3)0.0671 (15)0.0774 (15)−0.0170 (18)−0.0100 (18)0.0142 (11)
C30.133 (2)0.0778 (16)0.122 (2)−0.0014 (16)−0.0367 (17)0.0290 (15)
C40.0822 (14)0.0771 (14)0.1062 (16)−0.0069 (11)−0.0110 (12)0.0232 (12)
C50.0716 (11)0.0487 (9)0.0526 (9)−0.0029 (8)0.0101 (8)0.0012 (7)
C60.0856 (13)0.0656 (12)0.0772 (12)−0.0033 (10)0.0315 (10)0.0035 (9)
C70.0588 (10)0.0628 (11)0.0595 (9)−0.0036 (8)0.0162 (8)0.0009 (8)
C80.0745 (12)0.0604 (11)0.0696 (11)0.0016 (9)0.0112 (9)−0.0073 (8)
C90.0724 (12)0.0521 (10)0.0809 (12)−0.0102 (9)−0.0011 (9)0.0066 (9)
C100.0684 (12)0.0802 (13)0.0709 (12)−0.0198 (10)0.0111 (9)0.0164 (10)
C110.0672 (11)0.0787 (12)0.0552 (9)−0.0115 (9)0.0149 (8)0.0008 (8)
C120.0512 (9)0.0529 (9)0.0517 (8)−0.0048 (7)0.0059 (7)0.0057 (7)
C130.0522 (9)0.0521 (9)0.0507 (8)−0.0033 (7)0.0099 (7)0.0008 (7)
C140.0576 (9)0.0484 (9)0.0559 (9)−0.0010 (7)0.0117 (7)−0.0049 (7)
C150.0517 (9)0.0481 (9)0.0597 (9)0.0047 (7)0.0132 (7)0.0000 (7)
C160.0429 (8)0.0542 (9)0.0544 (9)0.0022 (7)0.0126 (6)−0.0010 (7)
C170.0558 (9)0.0525 (10)0.0606 (9)−0.0009 (8)0.0092 (7)−0.0085 (7)
C180.0595 (10)0.0469 (9)0.0635 (10)0.0054 (7)0.0080 (8)0.0017 (7)
C190.0437 (8)0.0570 (10)0.0589 (9)−0.0002 (7)0.0118 (7)−0.0057 (7)
C200.0462 (9)0.0565 (10)0.0612 (9)−0.0058 (7)0.0098 (7)−0.0016 (7)
C210.0413 (8)0.0512 (9)0.0588 (9)−0.0006 (7)0.0141 (7)−0.0009 (7)
C220.0528 (9)0.0501 (9)0.0619 (9)−0.0073 (7)0.0139 (7)−0.0040 (7)
C230.0491 (8)0.0484 (9)0.0592 (9)−0.0017 (7)0.0193 (7)−0.0003 (7)
C240.0558 (9)0.0552 (10)0.0573 (9)−0.0034 (7)0.0135 (7)−0.0001 (7)
C250.0471 (8)0.0459 (8)0.0597 (9)−0.0019 (7)0.0068 (7)0.0021 (7)
C260.0476 (8)0.0490 (9)0.0646 (9)0.0025 (7)0.0089 (7)−0.0003 (7)
C270.0488 (9)0.0758 (12)0.0828 (12)−0.0002 (8)0.0192 (8)0.0162 (9)
C280.0809 (13)0.0588 (11)0.0841 (13)−0.0143 (9)−0.0039 (10)−0.0047 (9)
C290.0636 (10)0.0501 (9)0.0652 (10)−0.0030 (8)0.0189 (8)0.0023 (7)
C300.0869 (14)0.0490 (10)0.0813 (12)−0.0072 (10)0.0173 (10)0.0056 (9)
C310.0738 (12)0.0497 (10)0.0730 (12)−0.0035 (9)0.0215 (9)0.0079 (8)

Geometric parameters (Å, °)

N1—C131.405 (2)C15—H150.9300
N1—C51.418 (2)C16—C171.395 (2)
N1—C121.431 (2)C16—C191.453 (2)
N2—C301.141 (2)C17—C181.378 (2)
N3—C311.143 (2)C17—H170.9300
C1—C21.354 (4)C18—H180.9300
C1—C61.392 (3)C19—C201.342 (2)
C1—H10.9300C19—H190.9300
C2—C31.347 (4)C20—C211.435 (2)
C2—H20.9300C20—H200.9300
C3—C41.375 (3)C21—C221.358 (2)
C3—H30.9300C21—C261.498 (2)
C4—C51.374 (3)C22—C231.420 (2)
C4—H40.9300C22—H220.9300
C5—C61.374 (2)C23—C291.375 (2)
C6—H60.9300C23—C241.494 (2)
C7—C81.373 (2)C24—C251.533 (2)
C7—C121.375 (2)C24—H24A0.9700
C7—H70.9300C24—H24B0.9700
C8—C91.373 (3)C25—C271.520 (2)
C8—H80.9300C25—C281.524 (2)
C9—C101.365 (3)C25—C261.531 (2)
C9—H90.9300C26—H26A0.9700
C10—C111.379 (2)C26—H26B0.9700
C10—H100.9300C27—H27A0.9600
C11—C121.381 (2)C27—H27B0.9600
C11—H110.9300C27—H27C0.9600
C13—C181.392 (2)C28—H28A0.9600
C13—C141.397 (2)C28—H28B0.9600
C14—C151.366 (2)C28—H28C0.9600
C14—H140.9300C29—C311.428 (3)
C15—C161.402 (2)C29—C301.428 (3)
C13—N1—C5122.75 (13)C17—C18—C13120.40 (15)
C13—N1—C12118.53 (12)C17—C18—H18119.8
C5—N1—C12118.29 (13)C13—C18—H18119.8
C2—C1—C6121.1 (2)C20—C19—C16125.98 (15)
C2—C1—H1119.4C20—C19—H19117.0
C6—C1—H1119.4C16—C19—H19117.0
C3—C2—C1119.4 (2)C19—C20—C21126.94 (15)
C3—C2—H2120.3C19—C20—H20116.5
C1—C2—H2120.3C21—C20—H20116.5
C2—C3—C4120.8 (2)C22—C21—C20119.28 (14)
C2—C3—H3119.6C22—C21—C26119.98 (14)
C4—C3—H3119.6C20—C21—C26120.72 (14)
C5—C4—C3120.8 (2)C21—C22—C23123.27 (14)
C5—C4—H4119.6C21—C22—H22118.4
C3—C4—H4119.6C23—C22—H22118.4
C4—C5—C6118.46 (17)C29—C23—C22121.22 (14)
C4—C5—N1119.87 (17)C29—C23—C24120.23 (14)
C6—C5—N1121.62 (16)C22—C23—C24118.50 (13)
C5—C6—C1119.5 (2)C23—C24—C25114.28 (13)
C5—C6—H6120.3C23—C24—H24A108.7
C1—C6—H6120.3C25—C24—H24A108.7
C8—C7—C12120.24 (16)C23—C24—H24B108.7
C8—C7—H7119.9C25—C24—H24B108.7
C12—C7—H7119.9H24A—C24—H24B107.6
C9—C8—C7120.29 (17)C27—C25—C28109.77 (14)
C9—C8—H8119.9C27—C25—C26110.51 (14)
C7—C8—H8119.9C28—C25—C26109.03 (13)
C10—C9—C8119.75 (17)C27—C25—C24110.18 (13)
C10—C9—H9120.1C28—C25—C24108.51 (13)
C8—C9—H9120.1C26—C25—C24108.80 (13)
C9—C10—C11120.45 (17)C21—C26—C25113.60 (12)
C9—C10—H10119.8C21—C26—H26A108.8
C11—C10—H10119.8C25—C26—H26A108.8
C10—C11—C12119.83 (17)C21—C26—H26B108.8
C10—C11—H11120.1C25—C26—H26B108.8
C12—C11—H11120.1H26A—C26—H26B107.7
C7—C12—C11119.43 (15)C25—C27—H27A109.5
C7—C12—N1120.57 (14)C25—C27—H27B109.5
C11—C12—N1119.96 (14)H27A—C27—H27B109.5
C18—C13—C14118.16 (14)C25—C27—H27C109.5
C18—C13—N1121.87 (14)H27A—C27—H27C109.5
C14—C13—N1119.96 (14)H27B—C27—H27C109.5
C15—C14—C13120.86 (14)C25—C28—H28A109.5
C15—C14—H14119.6C25—C28—H28B109.5
C13—C14—H14119.6H28A—C28—H28B109.5
C14—C15—C16121.88 (14)C25—C28—H28C109.5
C14—C15—H15119.1H28A—C28—H28C109.5
C16—C15—H15119.1H28B—C28—H28C109.5
C17—C16—C15116.57 (14)C23—C29—C31122.11 (15)
C17—C16—C19120.59 (14)C23—C29—C30121.35 (15)
C15—C16—C19122.84 (14)C31—C29—C30116.48 (15)
C18—C17—C16122.08 (15)N2—C30—C29178.8 (2)
C18—C17—H17119.0N3—C31—C29179.1 (2)
C16—C17—H17119.0
C6—C1—C2—C3−0.5 (4)C14—C15—C16—C171.5 (2)
C1—C2—C3—C4−0.1 (4)C14—C15—C16—C19−177.95 (14)
C2—C3—C4—C50.2 (4)C15—C16—C17—C18−2.3 (2)
C3—C4—C5—C60.2 (3)C19—C16—C17—C18177.10 (14)
C3—C4—C5—N1177.9 (2)C16—C17—C18—C130.9 (2)
C13—N1—C5—C4144.71 (18)C14—C13—C18—C171.4 (2)
C12—N1—C5—C4−42.9 (2)N1—C13—C18—C17−177.36 (14)
C13—N1—C5—C6−37.7 (2)C17—C16—C19—C20−169.57 (15)
C12—N1—C5—C6134.71 (17)C15—C16—C19—C209.8 (2)
C4—C5—C6—C1−0.7 (3)C16—C19—C20—C21179.76 (14)
N1—C5—C6—C1−178.40 (17)C19—C20—C21—C22−172.13 (15)
C2—C1—C6—C50.9 (3)C19—C20—C21—C266.3 (2)
C12—C7—C8—C90.0 (3)C20—C21—C22—C23177.62 (13)
C7—C8—C9—C100.1 (3)C26—C21—C22—C23−0.8 (2)
C8—C9—C10—C11−0.7 (3)C21—C22—C23—C29−175.45 (14)
C9—C10—C11—C121.3 (3)C21—C22—C23—C242.0 (2)
C8—C7—C12—C110.5 (3)C29—C23—C24—C25−158.00 (14)
C8—C7—C12—N1−177.28 (15)C22—C23—C24—C2524.5 (2)
C10—C11—C12—C7−1.2 (3)C23—C24—C25—C2772.25 (18)
C10—C11—C12—N1176.63 (15)C23—C24—C25—C28−167.55 (13)
C13—N1—C12—C7116.95 (17)C23—C24—C25—C26−49.05 (18)
C5—N1—C12—C7−55.8 (2)C22—C21—C26—C25−26.7 (2)
C13—N1—C12—C11−60.8 (2)C20—C21—C26—C25154.85 (14)
C5—N1—C12—C11126.46 (17)C27—C25—C26—C21−71.15 (17)
C5—N1—C13—C18−33.5 (2)C28—C25—C26—C21168.12 (13)
C12—N1—C13—C18154.15 (15)C24—C25—C26—C2149.95 (18)
C5—N1—C13—C14147.73 (15)C22—C23—C29—C31178.69 (14)
C12—N1—C13—C14−24.6 (2)C24—C23—C29—C311.2 (2)
C18—C13—C14—C15−2.3 (2)C22—C23—C29—C301.7 (2)
N1—C13—C14—C15176.54 (14)C24—C23—C29—C30−175.73 (15)
C13—C14—C15—C160.8 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2505).

References

  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hye, J. L., Jiwon, S., Jaehoon, H. & Soo, Y. P. (2004). Chem. Mater.16, 456–465.
  • Ju, H. D., Wan, Y., Yu, W. T. & Tao, X. T. (2006). Thin Solid Films, 515, 2403–2409.
  • Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o682–o683. [PMC free article] [PubMed]
  • Lemke, R. (1974). Synthesis, pp. 359–361.
  • Li, J. Y., Liu, D., Hong, Z. R. & Tong, S. W. (2003). Chem. Mater.15, 1486–1490.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tang, C. W., Vanslyke, S. A. & Chen, C. H. (1998). J. Appl. Phys.65, 3610–3616.
  • Tao, X. T. & Miyata, S. (2001). Appl. Phys. Lett.78, 279–281.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography