PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1126.
Published online 2009 April 25. doi:  10.1107/S1600536809014032
PMCID: PMC2977799

2-Amino-4-[1-(2-chloro­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]-6-(4-methyl­phen­yl)benzene-1,3-dicarbonitrile

Abstract

In the title compound, C24H17ClN6, the dihedral angles between the triazolyl ring and its adjacent chlorobenzene and trisubstituted benzene rings are 90.6 (2) and 55.7 (3)°, respectively. The dihedral angle between the trisubstituted ring and the attached tolyl ring of the biphenyl unit is 45.9 (3)°. Intra- and intermolecular N—H(...)N hydrogen bonds are present.

Related literature

For the synthesis, see: Victory et al. (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1126-scheme1.jpg

Experimental

Crystal data

  • C24H17ClN6
  • M r = 424.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1126-efi4.jpg
  • a = 13.623 (6) Å
  • b = 7.792 (4) Å
  • c = 20.608 (10) Å
  • β = 103.502 (6)°
  • V = 2127.0 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 293 K
  • 0.33 × 0.31 × 0.29 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.935, T max = 0.943
  • 11092 measured reflections
  • 4169 independent reflections
  • 3263 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.120
  • S = 1.03
  • 4169 reflections
  • 282 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014032/ng2572sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014032/ng2572Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project is supported by the State Key Laboratory of Applied Organic Chemistry, Lanzhou University.

supplementary crystallographic information

Comment

The title compound, C24H17N6Cl (I) (Figuer 1) was synthesized by the reaction of (E)-1-[1-(2-chlorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl]-3-(4-methylphenyl)prop-2-en-1-ones and malononitrile in the presence of piperindine at 25°C. The consists plane of subsituted triazolyl ring and 2-chlorophenyl ring, subsituted triazolyl ring and 2-amino-1,3-dinitrilphenyl ring, 2-amino-1,3-dinitrilphenyl ring and 4-methylphenyl ring is not co-planar [The dihedral angle of C1—C6—N1—N2 is 90.6 (2)°, C7—C8—C10—C11 is 55.7 (3)°, C13—C14—C18—C19 is 45.9 (3)° in stable conformation of the crystal].

On 2-amino-1,3-dinitrilphenyl ring, the p-π conjugation was indicated the between amino N5 and ring C12, bond length of C12—N5 is 1.361 (2)Å which is shorter than non-conjugation Csp2-Nsp2 bond C6—N1 1.430 Å(Table 1), angle of C12—N5—H5A, H5A—N5—H5B is 120°, the dihedral angle of N5—C12—C13—C14 is 177.3°, the dihedral angle of N5—C12—C13—C17 is 0.9°, N5 is sp2 hybridized atom.

On 2-amino-1,3-dinitrilphenyl ring, 2-amino has two N—H bond, and two intermolecular hydrogen bonds as the supramolecular structure in the crystal. The intermolecular N6···H5B—N5 hydrogen bond between the N6 atoms of C[equivalent]N group and N5—H5B, intermolecular N6···H'5B-N'5 hydrogen bond between the N6 atoms of the C[equivalent]N group and N5-H5B (Figure 2; Table 2). One 12 members ring is consisted of two intermolecular H-bonds. The orderly range of the structure forms stratification polymer in the crystal. The intermolecular hydrogen bond connect the translated molecules into an infinite chain on a layer.

Experimental

2-Amino-4-[1-(4-chlorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl]-6-(4-methylphenyl)benzene-1,3-dinitrile, which was synthesized by a modification of a published procedure (Victory, et al. 1991). To add 1.6 mL piperidine the mixture liquor of 0.675 g (2 mmol) (E)-1-[1-(2-chlorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl]-3-(4-methylphenyl)prop-2-en-1-one and 0.264 g (4 mmol) malononitrile in 5 mL of absolute ethanol was stirred. The mixture was stirred for 30 h at room temperature. After removal of solvent, the mixture was poured into water, neutrilized with 10% acetic acid. The resulting solid was filtered, washed with water, dried and isolated with petroleum ether/EtOAc(4:1) to give the target compound, mp 470–471 K, in 75% yield. The structure was established by 1H-NMR, IR and mass spectrosopic data analyses. 1H NMR(300 MHz, CDCl3): δ=2.341 (s, 3H, Ar—CH3), 2.458 (s, 3H, triazolyl-CH3), 5.408 (s, 2H, NH2), 7.161 (s, 1H, 5-H), 7.308–7.335 (d, 2H, J = 8.1 Hz, Ar—H), 7.485–7.601 (m, 5H, Ar—H), 7.636–7.663(d, 1H, J = 8.1 Hz, Ar—H) p.p.m.. MS (%): 424 (M+., 1.35%), 396(19.8), 334(3.5), 320(2.6), 305(1.5), 256 (3.3), 232 (1.2), 205 (3.5), 192 (11.7), 164 (10.6), 178(4.5), 164(10.6), 141(6.9), 138(10.3), 125(10.3), 91(17.5), 85(25.3), 77(10.6), 57(51.4), 43(100.0). IR(KBr, cm-1): 3442, 3349, 3234(N—H), 2214(C[equivalent]N), 1634, 1551, 1495, 823, 766

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The methyl groups were rotated to fit the electron density. The amino H-atoms were similarly generated.

Figures

Fig. 1.
A PLATON (Spek, 2009) view of the molecular structure of (I). The asymmetric unit showing 50% probability displacement ellipsoids.
Fig. 2.
A PLATON (Spek, 2009) view of the hydrogen-bonded motif of the supramolecular structure. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2.]

Crystal data

C24H17ClN6F(000) = 880
Mr = 424.89Dx = 1.327 Mg m3
Monoclinic, P21/nMelting point: 470 K
Hall symbol: -p 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.623 (6) ÅCell parameters from 4544 reflections
b = 7.792 (4) Åθ = 2.6–29.3°
c = 20.608 (10) ŵ = 0.20 mm1
β = 103.502 (6)°T = 293 K
V = 2127.0 (17) Å3Block, colorless
Z = 40.33 × 0.31 × 0.29 mm

Data collection

Bruker APEXII diffractometer4169 independent reflections
Radiation source: fine-focus sealed tube3263 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→14
Tmin = 0.935, Tmax = 0.943k = −6→9
11092 measured reflectionsl = −25→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.03w = 1/[s2(Fo2) + (0.0573P)2 + 0.5879P] where P = (Fo2 + 2Fc2)/3
4169 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.24428 (14)0.9337 (2)−0.06466 (9)0.0506 (4)
C20.18147 (18)0.9038 (3)−0.12685 (9)0.0620 (5)
H20.20620.8490−0.15980.074*
C30.08287 (17)0.9551 (3)−0.13950 (9)0.0667 (6)
H30.04090.9343−0.18130.080*
C40.04481 (15)1.0363 (3)−0.09206 (10)0.0655 (6)
H4−0.02251.0703−0.10160.079*
C50.10651 (13)1.0676 (3)−0.02996 (9)0.0530 (5)
H50.08111.12300.00260.064*
C60.20613 (13)1.0164 (2)−0.01645 (7)0.0417 (4)
C70.29203 (12)0.9574 (2)0.10288 (7)0.0391 (4)
C80.35736 (13)1.0573 (2)0.14774 (8)0.0435 (4)
C90.25130 (14)0.7827 (2)0.10582 (9)0.0515 (4)
H9A0.18100.78970.10610.077*
H9B0.28750.72650.14570.077*
H9C0.25890.71850.06750.077*
C100.41031 (13)1.0236 (2)0.21766 (7)0.0423 (4)
C110.35630 (12)0.9787 (2)0.26529 (8)0.0409 (4)
C120.40644 (13)0.9537 (2)0.33256 (7)0.0399 (4)
C130.51190 (12)0.9773 (2)0.34982 (7)0.0400 (4)
C140.56677 (13)1.0206 (2)0.30216 (8)0.0418 (4)
C150.51383 (13)1.0430 (2)0.23641 (8)0.0455 (4)
H150.54891.07180.20430.055*
C160.24834 (15)0.9704 (3)0.24816 (8)0.0518 (5)
C170.56104 (13)0.9498 (2)0.41871 (8)0.0468 (4)
C180.67814 (12)1.0387 (2)0.31955 (8)0.0424 (4)
C190.72827 (13)1.1296 (3)0.37549 (9)0.0526 (5)
H190.69151.17980.40330.063*
C200.83163 (14)1.1464 (3)0.39034 (10)0.0580 (5)
H200.86331.20920.42780.070*
C210.88966 (13)1.0726 (2)0.35108 (10)0.0524 (4)
C220.83984 (14)0.9792 (2)0.29615 (9)0.0528 (5)
H220.87720.92550.26950.063*
C230.73613 (14)0.9637 (2)0.27994 (8)0.0493 (4)
H230.70460.90240.24210.059*
C241.00282 (15)1.0947 (3)0.36777 (14)0.0788 (7)
H24A1.01981.20710.38610.118*
H24B1.02731.08150.32800.118*
H24C1.03341.00960.39990.118*
Cl10.36899 (5)0.87178 (10)−0.04831 (3)0.0865 (2)
N10.27058 (11)1.05500 (18)0.04722 (6)0.0436 (3)
N20.31963 (13)1.2076 (2)0.05662 (7)0.0609 (5)
N30.37317 (13)1.2074 (2)0.11804 (7)0.0608 (5)
N40.16232 (13)0.9651 (3)0.23643 (9)0.0800 (6)
N50.35492 (11)0.9051 (2)0.37873 (6)0.0488 (4)
H5A0.29070.88920.36700.059*
H5B0.38660.89030.41960.059*
N60.59330 (13)0.9292 (3)0.47402 (7)0.0686 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0600 (11)0.0520 (10)0.0374 (9)−0.0012 (9)0.0063 (8)0.0016 (8)
C20.0899 (16)0.0608 (12)0.0331 (9)−0.0109 (11)0.0102 (9)−0.0041 (8)
C30.0724 (14)0.0815 (15)0.0353 (10)−0.0277 (12)−0.0096 (9)0.0100 (10)
C40.0445 (10)0.0927 (16)0.0524 (12)−0.0116 (10)−0.0025 (9)0.0216 (11)
C50.0468 (10)0.0695 (12)0.0425 (9)−0.0044 (9)0.0098 (8)0.0101 (9)
C60.0493 (9)0.0475 (9)0.0249 (7)−0.0064 (7)0.0016 (6)0.0054 (7)
C70.0415 (8)0.0456 (9)0.0268 (7)−0.0027 (7)0.0011 (6)0.0033 (6)
C80.0495 (9)0.0487 (10)0.0289 (8)−0.0089 (8)0.0019 (7)0.0025 (7)
C90.0573 (11)0.0500 (10)0.0398 (9)−0.0106 (8)−0.0036 (8)0.0053 (8)
C100.0498 (10)0.0443 (9)0.0279 (8)−0.0058 (7)−0.0008 (7)−0.0016 (7)
C110.0427 (9)0.0444 (9)0.0314 (8)−0.0018 (7)0.0001 (6)−0.0007 (7)
C120.0493 (9)0.0388 (9)0.0294 (8)0.0020 (7)0.0046 (7)−0.0013 (6)
C130.0451 (9)0.0438 (9)0.0271 (7)0.0037 (7)0.0004 (6)−0.0033 (6)
C140.0457 (9)0.0425 (9)0.0336 (8)−0.0032 (7)0.0021 (7)−0.0051 (7)
C150.0510 (10)0.0528 (10)0.0303 (8)−0.0109 (8)0.0049 (7)−0.0004 (7)
C160.0518 (11)0.0686 (12)0.0312 (8)−0.0008 (9)0.0017 (7)0.0015 (8)
C170.0439 (9)0.0603 (11)0.0333 (9)0.0113 (8)0.0033 (7)−0.0053 (7)
C180.0448 (9)0.0446 (9)0.0350 (8)−0.0016 (7)0.0037 (7)−0.0020 (7)
C190.0436 (10)0.0603 (12)0.0505 (10)0.0035 (8)0.0040 (8)−0.0194 (9)
C200.0456 (10)0.0610 (12)0.0596 (11)0.0017 (9)−0.0032 (8)−0.0177 (9)
C210.0439 (10)0.0493 (10)0.0624 (12)0.0038 (8)0.0089 (8)0.0026 (9)
C220.0583 (11)0.0524 (11)0.0532 (11)0.0038 (9)0.0243 (9)0.0020 (8)
C230.0596 (11)0.0541 (11)0.0348 (9)−0.0081 (9)0.0124 (8)−0.0041 (7)
C240.0474 (12)0.0752 (16)0.1114 (19)0.0027 (11)0.0140 (12)−0.0038 (14)
Cl10.0737 (4)0.1036 (5)0.0813 (4)0.0322 (3)0.0161 (3)−0.0021 (3)
N10.0533 (8)0.0472 (8)0.0258 (6)−0.0077 (6)0.0000 (6)0.0032 (6)
N20.0851 (12)0.0559 (10)0.0336 (8)−0.0222 (9)−0.0027 (7)0.0072 (7)
N30.0823 (12)0.0577 (10)0.0342 (8)−0.0247 (9)−0.0032 (7)0.0043 (7)
N40.0487 (11)0.1340 (19)0.0519 (10)0.0007 (11)0.0008 (8)0.0018 (11)
N50.0481 (8)0.0656 (10)0.0309 (7)0.0008 (7)0.0053 (6)0.0032 (7)
N60.0632 (10)0.1060 (15)0.0311 (8)0.0225 (10)−0.0005 (7)0.0001 (8)

Geometric parameters (Å, °)

C1—C61.383 (3)C13—C141.407 (2)
C1—C21.385 (3)C13—C171.437 (2)
C1—Cl11.722 (2)C14—C151.389 (2)
C2—C31.367 (3)C14—C181.482 (2)
C2—H20.9300C15—H150.9300
C3—C41.364 (3)C16—N41.141 (2)
C3—H30.9300C17—N61.133 (2)
C4—C51.379 (3)C18—C191.389 (2)
C4—H40.9300C18—C231.390 (2)
C5—C61.379 (3)C19—C201.376 (3)
C5—H50.9300C19—H190.9300
C6—N11.430 (2)C20—C211.382 (3)
C7—N11.350 (2)C20—H200.9300
C7—C81.367 (2)C21—C221.383 (3)
C7—C91.476 (2)C21—C241.509 (3)
C8—N31.361 (2)C22—C231.379 (3)
C8—C101.476 (2)C22—H220.9300
C9—H9A0.9600C23—H230.9300
C9—H9B0.9600C24—H24A0.9600
C9—H9C0.9600C24—H24B0.9600
C10—C151.381 (2)C24—H24C0.9600
C10—C111.402 (2)N1—N21.355 (2)
C11—C121.409 (2)N2—N31.305 (2)
C11—C161.432 (3)N5—H5A0.8600
C12—N51.361 (2)N5—H5B0.8600
C12—C131.409 (2)
C6—C1—C2119.26 (18)C12—C13—C17116.25 (14)
C6—C1—Cl1120.60 (14)C15—C14—C13118.14 (15)
C2—C1—Cl1120.13 (16)C15—C14—C18119.53 (15)
C3—C2—C1119.63 (19)C13—C14—C18122.32 (14)
C3—C2—H2120.2C10—C15—C14121.52 (15)
C1—C2—H2120.2C10—C15—H15119.2
C4—C3—C2121.33 (17)C14—C15—H15119.2
C4—C3—H3119.3N4—C16—C11177.9 (2)
C2—C3—H3119.3N6—C17—C13175.17 (19)
C3—C4—C5119.7 (2)C19—C18—C23117.71 (16)
C3—C4—H4120.1C19—C18—C14121.75 (15)
C5—C4—H4120.1C23—C18—C14120.54 (15)
C4—C5—C6119.60 (19)C20—C19—C18120.83 (17)
C4—C5—H5120.2C20—C19—H19119.6
C6—C5—H5120.2C18—C19—H19119.6
C5—C6—C1120.46 (15)C19—C20—C21121.72 (18)
C5—C6—N1119.25 (16)C19—C20—H20119.1
C1—C6—N1120.25 (16)C21—C20—H20119.1
N1—C7—C8103.36 (15)C20—C21—C22117.39 (17)
N1—C7—C9123.05 (14)C20—C21—C24120.83 (19)
C8—C7—C9133.55 (15)C22—C21—C24121.78 (18)
N3—C8—C7109.39 (14)C23—C22—C21121.56 (17)
N3—C8—C10119.94 (14)C23—C22—H22119.2
C7—C8—C10130.65 (16)C21—C22—H22119.2
C7—C9—H9A109.5C22—C23—C18120.77 (17)
C7—C9—H9B109.5C22—C23—H23119.6
H9A—C9—H9B109.5C18—C23—H23119.6
C7—C9—H9C109.5C21—C24—H24A109.5
H9A—C9—H9C109.5C21—C24—H24B109.5
H9B—C9—H9C109.5H24A—C24—H24B109.5
C15—C10—C11120.01 (14)C21—C24—H24C109.5
C15—C10—C8119.22 (15)H24A—C24—H24C109.5
C11—C10—C8120.74 (15)H24B—C24—H24C109.5
C10—C11—C12120.70 (15)C7—N1—N2111.79 (13)
C10—C11—C16121.03 (15)C7—N1—C6128.73 (14)
C12—C11—C16118.08 (15)N2—N1—C6119.48 (13)
N5—C12—C11121.04 (15)N3—N2—N1106.45 (13)
N5—C12—C13121.43 (14)N2—N3—C8109.01 (14)
C11—C12—C13117.52 (14)C12—N5—H5A120.0
C14—C13—C12122.10 (14)C12—N5—H5B120.0
C14—C13—C17121.62 (15)H5A—N5—H5B120.0
C6—C1—C2—C3−0.4 (3)C12—C13—C14—C18−177.47 (15)
Cl1—C1—C2—C3−179.31 (16)C17—C13—C14—C180.7 (3)
C1—C2—C3—C40.2 (3)C11—C10—C15—C14−0.6 (3)
C2—C3—C4—C50.0 (3)C8—C10—C15—C14177.05 (16)
C3—C4—C5—C6−0.1 (3)C13—C14—C15—C10−0.1 (3)
C4—C5—C6—C1−0.1 (3)C18—C14—C15—C10178.52 (16)
C4—C5—C6—N1177.72 (17)C15—C14—C18—C19135.56 (19)
C2—C1—C6—C50.4 (3)C13—C14—C18—C19−45.9 (3)
Cl1—C1—C6—C5179.25 (14)C15—C14—C18—C23−44.6 (2)
C2—C1—C6—N1−177.45 (16)C13—C14—C18—C23133.90 (18)
Cl1—C1—C6—N11.4 (2)C23—C18—C19—C200.9 (3)
N1—C7—C8—N3−0.5 (2)C14—C18—C19—C20−179.29 (18)
C9—C7—C8—N3177.18 (19)C18—C19—C20—C21−0.8 (3)
N1—C7—C8—C10−178.75 (18)C19—C20—C21—C22−0.5 (3)
C9—C7—C8—C10−1.1 (3)C19—C20—C21—C24179.2 (2)
N3—C8—C10—C15−51.5 (2)C20—C21—C22—C231.7 (3)
C7—C8—C10—C15126.6 (2)C24—C21—C22—C23−177.98 (19)
N3—C8—C10—C11126.11 (19)C21—C22—C23—C18−1.6 (3)
C7—C8—C10—C11−55.7 (3)C19—C18—C23—C220.3 (3)
C15—C10—C11—C120.3 (3)C14—C18—C23—C22−179.56 (16)
C8—C10—C11—C12−177.31 (15)C8—C7—N1—N20.0 (2)
C15—C10—C11—C16175.27 (17)C9—C7—N1—N2−177.99 (17)
C8—C10—C11—C16−2.4 (3)C8—C7—N1—C6179.69 (17)
C10—C11—C12—N5−178.06 (16)C9—C7—N1—C61.7 (3)
C16—C11—C12—N56.8 (2)C5—C6—N1—C793.1 (2)
C10—C11—C12—C130.6 (2)C1—C6—N1—C7−89.1 (2)
C16—C11—C12—C13−174.46 (16)C5—C6—N1—N2−87.3 (2)
N5—C12—C13—C14177.34 (16)C1—C6—N1—N290.6 (2)
C11—C12—C13—C14−1.3 (2)C7—N1—N2—N30.5 (2)
N5—C12—C13—C17−0.9 (2)C6—N1—N2—N3−179.23 (16)
C11—C12—C13—C17−179.63 (15)N1—N2—N3—C8−0.8 (2)
C12—C13—C14—C151.1 (3)C7—C8—N3—N20.8 (2)
C17—C13—C14—C15179.27 (16)C10—C8—N3—N2179.31 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5B···N6i0.862.563.221 (2)134
N5—H5A···N40.862.913.540 (2)125

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2572).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Victory, P., Borrell, J. I. & Vidal-Ferran, A. (1991). Tetrahedron Lett.32, 5375–5378.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography