PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1117.
Published online 2009 April 25. doi:  10.1107/S1600536809013233
PMCID: PMC2977793

1,4a,7-Trimethyl-7-vinyl-1,2,3,4,4a,4b,5,6,7,9,10,10a-dodeca­hydro­phenanthrene-1-carboxylic acid

Abstract

The title compound, pimaric acid, C20H30O2, was isolated from a mixture of resin acids. There are three rings in the structure. The two cyclo­hexane rings have classical chair conformations with trans-fused ring junctions. The cyclo­hexene ring appears as a semi-chair.

Related literature

For physical and spectral data relating to pimaric acid, see: Green et al. (1958 [triangle]); Harris & Sanderson (1948 [triangle]). For the biological activity of pimaric acid, see: Imaizumi et al. (2002 [triangle]); Rubio et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1117-scheme1.jpg

Experimental

Crystal data

  • C20H30O2
  • M r = 302.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1117-efi1.jpg
  • a = 20.818 (4) Å
  • b = 10.990 (2) Å
  • c = 7.7650 (16) Å
  • V = 1776.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.979, T max = 0.993
  • 1862 measured reflections
  • 1862 independent reflections
  • 1231 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.188
  • S = 1.00
  • 1862 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013233/at2757sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013233/at2757Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant No. 30571466.

supplementary crystallographic information

Comment

The title compound has been isolated from a mixture of resin acids. It was identified as pimaric acid on the basis of the comparison of its physical and spectral data with literature values (Green et al., 1958; Harris et al., 1948). Pimaric acid exhibits a wide range of biological activities such as trypanocidal activity(Rubio et al., 2005), potent BK channel activity (Imaizumi et al., 2002). Although much attention has been paid to the bioactivities of pimaric acid, the crystal structure of the title compound has not yet been reported.

In this work, we describe the crystal structure of the title compound.

The molecular structure is shown in Fig. 1 and the crystal packing in Fig.2.

The atoms of C5, C6, C7, C8 in the cyclohexene ring and the atom C10 in the conjoint cyclohexane ring are in the same plane. The two methyl groups attached to the cyclohexane rings are in axial positions and in the same direction. The crystal structure is stabilized by O2—H2B···O1 and C12—H12A···O2 hydrogen bongding interactions.

Experimental

A mixture of resin acids and maleic anhydride were dissolved in acetic acid and the solution was refluxed for 4 h. After refluxing the solution was cooled to room temperature and then filtrated. The solvent in the filtrate was distilled away under vacuum and the remainder was dissolved in 1% sodium hydroxide solution. The solution was left standing overnight. The precipitate obtained from the solution was acidified by 5% hydrochloric acid solution and then dissolved in ether. The solution was washed with water until it was neutral, dryed with sodium sulfate and then concentrated. The residue was recrystallized with acetone and the title compound was obtained as colorless solid.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.98 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.
A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
Fig. 2.
A view of the packing of the title compound.

Crystal data

C20H30O2Dx = 1.131 Mg m3
Mr = 302.44Melting point: 490K K
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
a = 20.818 (4) ÅCell parameters from 25 reflections
b = 10.990 (2) Åθ = 9–12°
c = 7.7650 (16) ŵ = 0.07 mm1
V = 1776.6 (6) Å3T = 293 K
Z = 4Rectangular plate, colorless
F(000) = 6640.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 0→25
Absorption correction: ψ scan (North et al., 1968)k = 0→13
Tmin = 0.979, Tmax = 0.993l = −9→9
1862 measured reflections3 standard reflections every 200 reflections
1862 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3
1862 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.99697 (17)0.6536 (3)0.9540 (7)0.1009 (15)
O20.91875 (17)0.5243 (3)0.9640 (8)0.1170 (19)
H2B0.94930.47720.96030.176*
C10.5623 (5)0.9204 (9)0.5670 (15)0.149 (4)
H1A0.54210.90850.67250.179*
H1B0.55890.99500.51130.179*
C20.5940 (4)0.8361 (8)0.5000 (12)0.119 (3)
H2A0.61250.85580.39470.143*
C30.5645 (3)0.6180 (8)0.4461 (11)0.124 (3)
H3A0.57250.63400.32640.186*
H3B0.52000.63210.47130.186*
H3C0.57520.53500.47150.186*
C40.6077 (3)0.7061 (6)0.5606 (8)0.0801 (17)
C50.6758 (2)0.6766 (5)0.5262 (7)0.0711 (14)
H5A0.68740.66470.41180.085*
C60.7215 (2)0.6657 (4)0.6420 (6)0.0521 (11)
C70.7116 (2)0.6929 (4)0.8315 (6)0.0498 (11)
H7A0.71390.61440.89110.060*
C80.6445 (2)0.7431 (5)0.8672 (7)0.0680 (14)
H8A0.63390.73010.98740.082*
H8B0.64420.83000.84580.082*
C90.5940 (2)0.6822 (6)0.7544 (8)0.0787 (16)
H9A0.55180.71360.78370.094*
H9B0.59400.59520.77600.094*
C100.7870 (2)0.6163 (5)0.5973 (6)0.0640 (13)
H10A0.79200.61790.47310.077*
H10B0.78920.53200.63380.077*
C110.8424 (2)0.6850 (5)0.6776 (6)0.0577 (12)
H11A0.84650.76450.62450.069*
H11B0.88220.64090.65920.069*
C120.82995 (19)0.6994 (4)0.8726 (5)0.0445 (10)
H12A0.82030.61690.91280.053*
C130.7675 (2)0.7720 (4)0.9057 (5)0.0484 (11)
C140.8910 (2)0.7370 (4)0.9743 (6)0.0532 (12)
C150.8742 (3)0.7497 (5)1.1667 (7)0.0662 (14)
H15A0.86470.66991.21370.079*
H15B0.91100.78211.22800.079*
C160.8169 (3)0.8327 (5)1.1954 (7)0.0697 (14)
H16A0.80810.83851.31780.084*
H16B0.82700.91371.15350.084*
C170.7580 (2)0.7849 (5)1.1030 (5)0.0562 (13)
H17A0.72240.83961.12440.067*
H17B0.74690.70611.15050.067*
C180.7663 (2)0.8972 (4)0.8218 (7)0.0620 (13)
H18A0.80060.94580.86720.093*
H18B0.72600.93600.84560.093*
H18C0.77150.88870.69950.093*
C190.9237 (2)0.8539 (5)0.9099 (8)0.0758 (16)
H19A0.96080.87060.97940.114*
H19B0.89410.92060.91810.114*
H19C0.93660.84350.79220.114*
C200.9393 (2)0.6334 (4)0.9643 (7)0.062

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0487 (19)0.069 (2)0.185 (4)0.0073 (17)−0.008 (3)−0.014 (3)
O20.065 (2)0.063 (2)0.223 (6)0.0112 (18)−0.001 (3)0.030 (3)
C10.150 (8)0.132 (7)0.166 (10)0.000 (6)−0.001 (8)0.027 (7)
C20.098 (5)0.129 (7)0.130 (7)0.024 (5)−0.018 (5)0.027 (6)
C30.090 (5)0.158 (7)0.124 (6)−0.019 (5)−0.015 (5)−0.021 (6)
C40.056 (3)0.104 (5)0.080 (4)0.003 (3)−0.012 (3)−0.004 (4)
C50.065 (3)0.086 (4)0.062 (3)0.001 (3)0.007 (3)−0.009 (3)
C60.056 (3)0.049 (2)0.051 (3)0.000 (2)0.004 (2)−0.009 (2)
C70.050 (3)0.052 (3)0.048 (2)0.007 (2)0.010 (2)0.007 (2)
C80.049 (3)0.088 (3)0.067 (3)0.012 (3)0.004 (3)−0.003 (3)
C90.053 (3)0.084 (4)0.100 (4)0.003 (3)0.004 (3)0.008 (4)
C100.064 (3)0.076 (3)0.052 (3)0.008 (3)0.008 (2)−0.013 (3)
C110.051 (3)0.069 (3)0.053 (3)0.010 (2)0.014 (2)−0.002 (3)
C120.049 (2)0.042 (2)0.042 (2)0.0070 (19)0.007 (2)0.005 (2)
C130.055 (2)0.050 (2)0.041 (2)0.013 (2)0.004 (2)0.001 (2)
C140.052 (2)0.045 (2)0.063 (3)0.002 (2)−0.004 (2)0.006 (2)
C150.071 (3)0.070 (3)0.057 (3)0.016 (3)−0.011 (3)0.000 (3)
C160.089 (4)0.069 (3)0.052 (3)0.017 (3)−0.009 (3)−0.008 (3)
C170.068 (3)0.059 (3)0.042 (3)0.016 (2)0.001 (2)−0.004 (2)
C180.073 (3)0.051 (3)0.062 (3)0.010 (2)−0.006 (3)0.007 (2)
C190.070 (3)0.065 (3)0.093 (4)−0.013 (3)−0.021 (3)0.011 (3)
C200.0680.0530.064−0.002−0.0070.008

Geometric parameters (Å, °)

O1—C201.223 (6)C10—H10A0.9700
O2—C201.273 (6)C10—H10B0.9700
O2—H2B0.8200C11—C121.544 (6)
C1—C21.251 (11)C11—H11A0.9700
C1—H1A0.9300C11—H11B0.9700
C1—H1B0.9300C12—C131.546 (6)
C2—C41.531 (10)C12—C141.552 (6)
C2—H2A0.9300C12—H12A0.9800
C3—C41.592 (9)C13—C181.523 (6)
C3—H3A0.9600C13—C171.551 (6)
C3—H3B0.9600C14—C201.520 (6)
C3—H3C0.9600C14—C191.538 (6)
C4—C51.479 (7)C14—C151.541 (7)
C4—C91.554 (8)C15—C161.517 (7)
C5—C61.315 (6)C15—H15A0.9700
C5—H5A0.9300C15—H15B0.9700
C6—C101.507 (6)C16—C171.515 (7)
C6—C71.516 (6)C16—H16A0.9700
C7—C81.527 (6)C16—H16B0.9700
C7—C131.563 (6)C17—H17A0.9700
C7—H7A0.9800C17—H17B0.9700
C8—C91.524 (7)C18—H18A0.9600
C8—H8A0.9700C18—H18B0.9600
C8—H8B0.9700C18—H18C0.9600
C9—H9A0.9700C19—H19A0.9600
C9—H9B0.9700C19—H19B0.9600
C10—C111.514 (7)C19—H19C0.9600
C20—O2—H2B109.5C12—C11—H11B109.9
C2—C1—H1A120.0H11A—C11—H11B108.3
C2—C1—H1B120.0C11—C12—C13110.9 (3)
H1A—C1—H1B120.0C11—C12—C14112.8 (4)
C1—C2—C4131.5 (10)C13—C12—C14117.8 (3)
C1—C2—H2A114.3C11—C12—H12A104.6
C4—C2—H2A114.3C13—C12—H12A104.6
C4—C3—H3A109.5C14—C12—H12A104.6
C4—C3—H3B109.5C18—C13—C12114.1 (4)
H3A—C3—H3B109.5C18—C13—C17109.7 (4)
C4—C3—H3C109.5C12—C13—C17108.6 (4)
H3A—C3—H3C109.5C18—C13—C7109.4 (4)
H3B—C3—H3C109.5C12—C13—C7106.2 (3)
C5—C4—C2109.1 (6)C17—C13—C7108.7 (4)
C5—C4—C9108.3 (5)C20—C14—C19108.4 (4)
C2—C4—C9114.9 (6)C20—C14—C15105.6 (4)
C5—C4—C3107.9 (5)C19—C14—C15109.9 (4)
C2—C4—C3106.9 (6)C20—C14—C12108.5 (4)
C9—C4—C3109.5 (6)C19—C14—C12114.8 (4)
C6—C5—C4126.2 (5)C15—C14—C12109.3 (4)
C6—C5—H5A116.9C16—C15—C14112.1 (4)
C4—C5—H5A116.9C16—C15—H15A109.2
C5—C6—C10122.0 (4)C14—C15—H15A109.2
C5—C6—C7123.1 (4)C16—C15—H15B109.2
C10—C6—C7114.7 (4)C14—C15—H15B109.2
C6—C7—C8111.8 (4)H15A—C15—H15B107.9
C6—C7—C13111.4 (4)C17—C16—C15111.0 (4)
C8—C7—C13114.4 (4)C17—C16—H16A109.4
C6—C7—H7A106.2C15—C16—H16A109.4
C8—C7—H7A106.2C17—C16—H16B109.4
C13—C7—H7A106.2C15—C16—H16B109.4
C9—C8—C7111.6 (4)H16A—C16—H16B108.0
C9—C8—H8A109.3C16—C17—C13113.4 (4)
C7—C8—H8A109.3C16—C17—H17A108.9
C9—C8—H8B109.3C13—C17—H17A108.9
C7—C8—H8B109.3C16—C17—H17B108.9
H8A—C8—H8B108.0C13—C17—H17B108.9
C8—C9—C4110.8 (5)H17A—C17—H17B107.7
C8—C9—H9A109.5C13—C18—H18A109.5
C4—C9—H9A109.5C13—C18—H18B109.5
C8—C9—H9B109.5H18A—C18—H18B109.5
C4—C9—H9B109.5C13—C18—H18C109.5
H9A—C9—H9B108.1H18A—C18—H18C109.5
C6—C10—C11114.5 (4)H18B—C18—H18C109.5
C6—C10—H10A108.6C14—C19—H19A109.5
C11—C10—H10A108.6C14—C19—H19B109.5
C6—C10—H10B108.6H19A—C19—H19B109.5
C11—C10—H10B108.6C14—C19—H19C109.5
H10A—C10—H10B107.6H19A—C19—H19C109.5
C10—C11—C12109.1 (4)H19B—C19—H19C109.5
C10—C11—H11A109.9O1—C20—O2120.0 (5)
C12—C11—H11A109.9O1—C20—C14121.1 (4)
C10—C11—H11B109.9O2—C20—C14118.8 (4)
C1—C2—C4—C5−138.0 (10)C14—C12—C13—C7−163.7 (4)
C1—C2—C4—C9−16.1 (13)C6—C7—C13—C1866.0 (5)
C1—C2—C4—C3105.6 (12)C8—C7—C13—C18−62.1 (5)
C2—C4—C5—C6108.1 (7)C6—C7—C13—C12−57.6 (4)
C9—C4—C5—C6−17.6 (9)C8—C7—C13—C12174.3 (4)
C3—C4—C5—C6−136.1 (6)C6—C7—C13—C17−174.2 (4)
C4—C5—C6—C10170.2 (5)C8—C7—C13—C1757.7 (5)
C4—C5—C6—C7−5.4 (9)C11—C12—C14—C20−65.6 (5)
C5—C6—C7—C8−4.4 (7)C13—C12—C14—C20163.0 (4)
C10—C6—C7—C8179.7 (4)C11—C12—C14—C1955.8 (5)
C5—C6—C7—C13−133.9 (5)C13—C12—C14—C19−75.5 (5)
C10—C6—C7—C1350.2 (5)C11—C12—C14—C15179.8 (4)
C6—C7—C8—C937.2 (6)C13—C12—C14—C1548.4 (5)
C13—C7—C8—C9165.1 (4)C20—C14—C15—C16−168.9 (4)
C7—C8—C9—C4−61.6 (6)C19—C14—C15—C1674.3 (5)
C5—C4—C9—C849.7 (7)C12—C14—C15—C16−52.4 (6)
C2—C4—C9—C8−72.5 (6)C14—C15—C16—C1759.3 (6)
C3—C4—C9—C8167.2 (5)C15—C16—C17—C13−58.9 (6)
C5—C6—C10—C11137.5 (5)C18—C13—C17—C16−74.5 (5)
C7—C6—C10—C11−46.6 (6)C12—C13—C17—C1650.8 (5)
C6—C10—C11—C1250.2 (6)C7—C13—C17—C16165.9 (4)
C10—C11—C12—C13−60.7 (5)C19—C14—C20—O118.5 (7)
C10—C11—C12—C14164.6 (4)C15—C14—C20—O1−99.2 (6)
C11—C12—C13—C18−56.5 (5)C12—C14—C20—O1143.8 (5)
C14—C12—C13—C1875.7 (5)C19—C14—C20—O2−160.4 (5)
C11—C12—C13—C17−179.2 (4)C15—C14—C20—O281.9 (6)
C14—C12—C13—C17−47.0 (5)C12—C14—C20—O2−35.2 (7)
C11—C12—C13—C764.1 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2757).

References

  • Enraf–Nonius (1994). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Green, B., Harris, A. & Whalley, W. B. (1958). J. Chem. Soc. pp. 4715–4719.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Harris, G. C. & Sanderson, T. F. (1948). J. Am. Chem. Soc.70, 2081–2085. [PubMed]
  • Imaizumi, Y., Sakamoto, K., Yamada, A., Hotta, A., Ohya, S., Muraki, K., Uchiyama, M. & Ohwada, T. (2002). Mol. Pharmacol.62, 836–846. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Rubio, J., Calderon, J. S., Flores, A., Castroa, C. & Cespedes, C. L. (2005). J. Biosci.60, 711–716. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography