PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1109–o1110.
Published online 2009 April 25. doi:  10.1107/S1600536809014810
PMCID: PMC2977787

3,6-Dimethyl-1-phenyl-4-(2-thien­yl)-8-(2-thienylmethyl­ene)-5,6,7,8-tetra­hydro-1H-pyrazolo[3,4-b][1,6]naphthyridine

Abstract

In the mol­ecule of the title compound, C26H22N4S2, the pyrazole ring is oriented at a dihedral angle of 0.85 (3)° with respect to the adjacent naphthyridine ring, while the other ring of naphthyridine adopts an envelope conformation. The dihedral angle between phenyl and pyrazole rings is 87.65 (3)°. In the crystal structure, weak inter­molecular C—H(...)N inter­actions link the mol­ecules into chains. The π–π contacts between the naphthyridine rings and the naphthyridine and thio­phene rings [centroid–centroid distances = 3.766 (3) and 3.878 (3) Å] may further stabilize the structure. A weak C—H(...)π inter­action is also present.

Related literature

For the biological activity of naphthyridines, see: Abou et al. (2001 [triangle]); Aleem et al. (2002 [triangle]); Blagg et al. (2003 [triangle]); Ohta et al. (2004 [triangle]). For the biological properties of pyrazolopyridine derivatives, see: Lynck et al. (1988 [triangle]); Fucini et al. (2008 [triangle]); Warshakoon et al. (2006 [triangle]). They are also active against gram positive and gram negative bacteria, see: El-Dean et al. (1991 [triangle]) and inhibit cholesterol formation, see: Fujikawa et al. (1989 [triangle], 1990 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1109-scheme1.jpg

Experimental

Crystal data

  • C26H22N4S2
  • M r = 454.60
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1109-efi1.jpg
  • a = 10.7187 (16) Å
  • b = 10.9704 (19) Å
  • c = 11.153 (2) Å
  • α = 109.785 (2)°
  • β = 102.364 (1)°
  • γ = 104.201 (1)°
  • V = 1131.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 298 K
  • 0.18 × 0.17 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.955, T max = 0.960
  • 5846 measured reflections
  • 3918 independent reflections
  • 2322 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.176
  • S = 1.00
  • 3918 reflections
  • 291 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014810/hk2672sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014810/hk2672Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20672090), the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) and the Six Kinds of Professional Elite Foundation of Jiangsu Province (grant No. 06-A-039) for financial support.

supplementary crystallographic information

Comment

Naphthyridines have received considerable attention over the past years because of their wide range of biological activities including antitumor (Abou et al., 2001; Aleem et al., 2002), anti-inflammatory (Blagg et al., 2003) and antifungal (Ohta et al., 2004) activities. Pyrazolopyridine derivatives are important heterocyclic compounds, which exhibit a diverse range of biological properties such as new inhibitors of xanthine oxidases (Lynck et al., 1988), as Polo-like kinase 1 inhibitors (Fucini et al., 2008) and HIF-1alpha prolyl hydroxylase inhibitors (Warshakoon et al., 2006). They also have proven to be active against gram positive and gram negative bacterias (El-Dean et al., 1991) and also as compounds for the inhibition of cholesterol formation (Fujikawa et al., 1989, 1990). We report herein the crystal structure of the title compound, containing the skeletons of naphthyridine and pyrazolopyridine.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N2/C1-C3), B (N3/C2-C4/C6/C7), D (C10-C15), E (S2/C17-C20) and F (S1/C23-C26) are, of course, planar, and they are oriented at dihedral angles of A/B = 0.85 (3), A/D = 87.65 (3) and B/E = 18.10 (4) °. Ring C (N4/C5-C9) adopts envelope conformation, with atom N4 displaced by 0.660 (3) Å from the plane of the other ring atoms.

In the crystal structure, weak intermolecular C-H···N interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the naphthyridine rings and the naphthyridine and thiophene rings, Cg2—Cg2i and Cg2—Cg6ii [symmetry codes: (i) 1 - x, 1 - y, 1 - z, (ii) -x, 1 - y, 1 - z, where Cg2 and Cg6 are centroids of the rings B (N3/C2-C4/C6/C7) and F (S1/C23-C26), respectively] may further stabilize the structure, with centroid-centroid distances of 3.766 (3) and 3.878 (3) Å, respectively. There also exists a weak C-H···π interaction (Table 1).

Experimental

The title compound was prepared by the reaction of of 1-methyl-3,5-bis(thiophen -2-ylmethylene)piperidin-4-one (1 mmol) and 3-methyl-1-phenyl-1H-pyrazol -5- amine (1 mmol) in glycol (2 ml).

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C26H22N4S2Z = 2
Mr = 454.60F(000) = 476
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Melting point = 452–453 K
a = 10.7187 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9704 (19) ÅCell parameters from 1616 reflections
c = 11.153 (2) Åθ = 2.3–24.8°
α = 109.785 (2)°µ = 0.26 mm1
β = 102.364 (1)°T = 298 K
γ = 104.201 (1)°Block, yellow
V = 1131.0 (3) Å30.18 × 0.17 × 0.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer3918 independent reflections
Radiation source: fine-focus sealed tube2322 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→11
Tmin = 0.955, Tmax = 0.960k = −12→13
5846 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0957P)2] where P = (Fo2 + 2Fc2)/3
3918 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.09086 (12)0.85725 (11)1.54317 (11)0.0768 (4)
S20.32900 (12)0.10633 (12)1.04051 (11)0.0826 (4)
N10.5616 (3)0.2524 (3)1.5917 (3)0.0481 (7)
N20.4340 (3)0.1519 (3)1.5362 (3)0.0529 (8)
N30.6907 (3)0.4256 (3)1.5345 (3)0.0442 (7)
N40.7120 (3)0.5378 (3)1.2194 (3)0.0507 (7)
C10.3741 (3)0.1548 (3)1.4219 (3)0.0477 (9)
C20.4614 (3)0.2600 (3)1.3994 (3)0.0432 (8)
C30.5805 (3)0.3207 (3)1.5104 (3)0.0417 (8)
C40.4568 (3)0.3106 (3)1.2988 (3)0.0416 (8)
C50.5739 (3)0.4802 (4)1.2173 (3)0.0518 (9)
H5A0.51980.40871.12820.062*
H5B0.53380.55201.23580.062*
C60.5706 (3)0.4201 (3)1.3199 (3)0.0432 (8)
C70.6845 (3)0.4735 (3)1.4386 (3)0.0417 (8)
C80.8071 (3)0.5867 (3)1.4584 (3)0.0435 (8)
C90.7958 (4)0.6439 (4)1.3528 (4)0.0565 (10)
H9A0.75670.71601.37670.068*
H9B0.88610.68491.35090.068*
C100.6506 (3)0.2705 (3)1.7162 (3)0.0458 (8)
C110.5969 (4)0.2282 (4)1.8042 (4)0.0588 (10)
H110.50320.18861.78240.071*
C120.6838 (4)0.2456 (4)1.9247 (4)0.0659 (11)
H120.64770.21741.98360.079*
C130.8214 (4)0.3032 (4)1.9589 (4)0.0690 (11)
H130.87880.31512.04050.083*
C140.8741 (4)0.3437 (4)1.8704 (4)0.0643 (11)
H140.96790.38201.89230.077*
C150.7896 (4)0.3281 (4)1.7496 (4)0.0555 (10)
H150.82650.35641.69110.067*
C160.2334 (4)0.0573 (4)1.3364 (4)0.0625 (11)
H16A0.2020−0.00311.37730.094*
H16B0.23410.00361.24850.094*
H16C0.17370.10871.32840.094*
C170.3367 (3)0.2461 (3)1.1741 (3)0.0459 (8)
C180.2173 (3)0.2811 (4)1.1483 (3)0.0498 (9)
H180.20160.35561.20570.060*
C190.1251 (4)0.1809 (5)1.0180 (4)0.0675 (11)
H190.03950.18320.98210.081*
C200.1702 (4)0.0850 (4)0.9523 (4)0.0657 (11)
H200.12020.01430.86750.079*
C210.7112 (4)0.5941 (4)1.1182 (4)0.0688 (11)
H21A0.68110.67191.14250.103*
H21B0.65060.52451.03200.103*
H21C0.80150.62301.11360.103*
C220.9196 (3)0.6288 (3)1.5629 (3)0.0482 (9)
H220.91190.58261.61860.058*
C231.0514 (4)0.7338 (3)1.6046 (3)0.0480 (9)
C241.1687 (3)0.7475 (3)1.7027 (3)0.0425 (8)
H241.17050.69321.75110.051*
C251.2830 (4)0.8555 (4)1.7167 (4)0.0665 (11)
H251.36960.87871.77500.080*
C261.2548 (4)0.9214 (4)1.6380 (4)0.0740 (13)
H261.31930.99451.63640.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0715 (8)0.0687 (7)0.0740 (8)−0.0057 (6)0.0132 (6)0.0382 (6)
S20.0723 (8)0.0782 (8)0.0661 (7)0.0296 (6)0.0035 (6)0.0026 (6)
N10.0430 (17)0.0511 (17)0.0446 (16)0.0028 (14)0.0117 (14)0.0245 (14)
N20.0424 (17)0.0533 (18)0.0526 (18)−0.0015 (14)0.0116 (14)0.0248 (15)
N30.0400 (16)0.0432 (15)0.0403 (15)0.0046 (13)0.0104 (13)0.0154 (13)
N40.0521 (18)0.0571 (17)0.0439 (16)0.0121 (15)0.0142 (14)0.0278 (15)
C10.042 (2)0.047 (2)0.048 (2)0.0066 (16)0.0138 (16)0.0192 (17)
C20.0382 (19)0.0431 (18)0.0415 (18)0.0080 (15)0.0127 (15)0.0140 (15)
C30.0405 (19)0.0447 (18)0.0362 (18)0.0095 (16)0.0102 (15)0.0177 (15)
C40.0378 (19)0.0428 (18)0.0402 (18)0.0126 (15)0.0104 (15)0.0147 (15)
C50.049 (2)0.057 (2)0.051 (2)0.0140 (18)0.0126 (17)0.0300 (18)
C60.042 (2)0.0457 (19)0.0436 (19)0.0134 (16)0.0157 (16)0.0204 (16)
C70.0414 (19)0.0432 (18)0.0415 (19)0.0128 (16)0.0150 (16)0.0192 (16)
C80.046 (2)0.0409 (18)0.0402 (18)0.0103 (16)0.0160 (16)0.0157 (15)
C90.056 (2)0.056 (2)0.057 (2)0.0079 (19)0.0181 (19)0.0306 (19)
C100.047 (2)0.0435 (19)0.045 (2)0.0110 (16)0.0141 (17)0.0204 (16)
C110.055 (2)0.065 (2)0.054 (2)0.0109 (19)0.0169 (19)0.029 (2)
C120.075 (3)0.080 (3)0.054 (2)0.025 (2)0.026 (2)0.040 (2)
C130.070 (3)0.086 (3)0.052 (2)0.029 (2)0.012 (2)0.033 (2)
C140.050 (2)0.072 (3)0.063 (3)0.017 (2)0.008 (2)0.027 (2)
C150.055 (2)0.062 (2)0.053 (2)0.0169 (19)0.0186 (19)0.0284 (19)
C160.048 (2)0.061 (2)0.063 (2)−0.0026 (19)0.0112 (19)0.027 (2)
C170.044 (2)0.0469 (19)0.0428 (19)0.0086 (16)0.0146 (16)0.0186 (16)
C180.041 (2)0.058 (2)0.0372 (18)0.0101 (17)0.0098 (16)0.0105 (17)
C190.047 (2)0.089 (3)0.072 (3)0.026 (2)0.014 (2)0.043 (3)
C200.055 (2)0.061 (2)0.049 (2)0.001 (2)−0.0019 (19)0.0084 (19)
C210.072 (3)0.083 (3)0.059 (2)0.018 (2)0.021 (2)0.045 (2)
C220.051 (2)0.0463 (19)0.047 (2)0.0076 (17)0.0196 (18)0.0229 (17)
C230.051 (2)0.0436 (19)0.0426 (19)0.0065 (17)0.0194 (17)0.0146 (16)
C240.0415 (19)0.0375 (17)0.0444 (19)0.0098 (15)0.0167 (16)0.0132 (15)
C250.047 (2)0.072 (3)0.061 (2)0.011 (2)0.017 (2)0.011 (2)
C260.064 (3)0.060 (2)0.068 (3)−0.014 (2)0.025 (2)0.016 (2)

Geometric parameters (Å, °)

S1—C261.672 (5)C11—C121.384 (5)
S1—C231.718 (4)C11—H110.9300
S2—C201.689 (4)C12—C131.363 (5)
S2—C171.708 (3)C12—H120.9300
N1—C31.375 (4)C13—C141.379 (6)
N1—N21.381 (3)C13—H130.9300
N1—C101.424 (4)C14—C151.381 (5)
N2—C11.314 (4)C14—H140.9300
N3—C31.334 (4)C15—H150.9300
N3—C71.338 (4)C16—H16A0.9600
N4—C51.451 (4)C16—H16B0.9600
N4—C91.455 (4)C16—H16C0.9600
N4—C211.458 (4)C17—C181.423 (5)
C1—C21.428 (4)C18—C191.438 (5)
C1—C161.493 (5)C18—H180.9300
C2—C31.398 (4)C19—C201.325 (5)
C2—C41.407 (4)C19—H190.9300
C4—C61.398 (4)C20—H200.9300
C4—C171.487 (4)C21—H21A0.9600
C5—C61.504 (5)C21—H21B0.9600
C5—H5A0.9700C21—H21C0.9600
C5—H5B0.9700C22—C231.448 (4)
C6—C71.420 (4)C22—H220.9300
C7—C81.486 (4)C23—C241.417 (5)
C8—C221.336 (5)C24—C251.417 (5)
C8—C91.508 (5)C24—H240.9300
C9—H9A0.9700C25—C261.344 (6)
C9—H9B0.9700C25—H250.9300
C10—C151.379 (5)C26—H260.9300
C10—C111.389 (5)
C26—S1—C2393.1 (2)C13—C12—H12119.3
C20—S2—C1792.60 (19)C11—C12—H12119.3
C3—N1—N2110.2 (3)C12—C13—C14118.9 (4)
C3—N1—C10130.4 (3)C12—C13—H13120.5
N2—N1—C10119.4 (3)C14—C13—H13120.5
C1—N2—N1107.4 (3)C13—C14—C15121.0 (4)
C3—N3—C7114.8 (3)C13—C14—H14119.5
C5—N4—C9110.4 (3)C15—C14—H14119.5
C5—N4—C21110.0 (3)C10—C15—C14119.8 (4)
C9—N4—C21110.6 (3)C10—C15—H15120.1
N2—C1—C2110.4 (3)C14—C15—H15120.1
N2—C1—C16120.6 (3)C1—C16—H16A109.5
C2—C1—C16129.0 (3)C1—C16—H16B109.5
C3—C2—C4117.5 (3)H16A—C16—H16B109.5
C3—C2—C1105.4 (3)C1—C16—H16C109.5
C4—C2—C1137.1 (3)H16A—C16—H16C109.5
N3—C3—N1126.3 (3)H16B—C16—H16C109.5
N3—C3—C2127.1 (3)C18—C17—C4128.8 (3)
N1—C3—C2106.6 (3)C18—C17—S2111.7 (2)
C6—C4—C2117.1 (3)C4—C17—S2119.5 (3)
C6—C4—C17122.2 (3)C17—C18—C19108.0 (3)
C2—C4—C17120.6 (3)C17—C18—H18126.0
N4—C5—C6111.5 (3)C19—C18—H18126.0
N4—C5—H5A109.3C20—C19—C18115.7 (4)
C6—C5—H5A109.3C20—C19—H19122.2
N4—C5—H5B109.3C18—C19—H19122.2
C6—C5—H5B109.3C19—C20—S2112.1 (3)
H5A—C5—H5B108.0C19—C20—H20124.0
C4—C6—C7119.5 (3)S2—C20—H20124.0
C4—C6—C5120.5 (3)N4—C21—H21A109.5
C7—C6—C5120.0 (3)N4—C21—H21B109.5
N3—C7—C6124.0 (3)H21A—C21—H21B109.5
N3—C7—C8116.7 (3)N4—C21—H21C109.5
C6—C7—C8119.3 (3)H21A—C21—H21C109.5
C22—C8—C7119.9 (3)H21B—C21—H21C109.5
C22—C8—C9124.1 (3)C8—C22—C23131.3 (3)
C7—C8—C9115.9 (3)C8—C22—H22114.4
N4—C9—C8112.0 (3)C23—C22—H22114.4
N4—C9—H9A109.2C24—C23—C22123.9 (3)
C8—C9—H9A109.2C24—C23—S1109.9 (2)
N4—C9—H9B109.2C22—C23—S1126.2 (3)
C8—C9—H9B109.2C23—C24—C25110.4 (3)
H9A—C9—H9B107.9C23—C24—H24124.8
C15—C10—C11119.6 (3)C25—C24—H24124.8
C15—C10—N1120.7 (3)C26—C25—C24114.0 (4)
C11—C10—N1119.7 (3)C26—C25—H25123.0
C12—C11—C10119.4 (4)C24—C25—H25123.0
C12—C11—H11120.3C25—C26—S1112.5 (3)
C10—C11—H11120.3C25—C26—H26123.7
C13—C12—C11121.3 (4)S1—C26—H26123.7
C3—N1—N2—C10.9 (4)C6—C7—C8—C94.5 (5)
C10—N1—N2—C1−178.9 (3)C5—N4—C9—C862.2 (4)
N1—N2—C1—C2−0.7 (4)C21—N4—C9—C8−175.8 (3)
N1—N2—C1—C16179.8 (3)C22—C8—C9—N4143.5 (3)
N2—C1—C2—C30.3 (4)C7—C8—C9—N4−34.4 (4)
C16—C1—C2—C3179.7 (3)C3—N1—C10—C15−24.3 (6)
N2—C1—C2—C4178.8 (4)N2—N1—C10—C15155.4 (3)
C16—C1—C2—C4−1.8 (7)C3—N1—C10—C11156.4 (3)
C7—N3—C3—N1179.3 (3)N2—N1—C10—C11−23.9 (5)
C7—N3—C3—C2−1.6 (5)C15—C10—C11—C120.5 (6)
N2—N1—C3—N3178.5 (3)N1—C10—C11—C12179.8 (3)
C10—N1—C3—N3−1.8 (6)C10—C11—C12—C13−0.1 (6)
N2—N1—C3—C2−0.7 (4)C11—C12—C13—C14−0.5 (6)
C10—N1—C3—C2179.0 (3)C12—C13—C14—C150.8 (6)
C4—C2—C3—N32.2 (5)C11—C10—C15—C14−0.2 (6)
C1—C2—C3—N3−178.9 (3)N1—C10—C15—C14−179.5 (3)
C4—C2—C3—N1−178.6 (3)C13—C14—C15—C10−0.4 (6)
C1—C2—C3—N10.3 (4)C6—C4—C17—C18−90.7 (4)
C3—C2—C4—C6−1.7 (5)C2—C4—C17—C1891.2 (4)
C1—C2—C4—C6180.0 (4)C6—C4—C17—S292.1 (4)
C3—C2—C4—C17176.6 (3)C2—C4—C17—S2−86.1 (4)
C1—C2—C4—C17−1.8 (6)C20—S2—C17—C18−2.6 (3)
C9—N4—C5—C6−58.1 (4)C20—S2—C17—C4175.1 (3)
C21—N4—C5—C6179.6 (3)C4—C17—C18—C19−174.7 (3)
C2—C4—C6—C70.8 (5)S2—C17—C18—C192.8 (4)
C17—C4—C6—C7−177.4 (3)C17—C18—C19—C20−1.6 (5)
C2—C4—C6—C5−180.0 (3)C18—C19—C20—S2−0.4 (5)
C17—C4—C6—C51.8 (5)C17—S2—C20—C191.7 (3)
N4—C5—C6—C4−151.4 (3)C7—C8—C22—C23179.2 (3)
N4—C5—C6—C727.8 (4)C9—C8—C22—C231.3 (6)
C3—N3—C7—C60.6 (5)C8—C22—C23—C24−166.9 (4)
C3—N3—C7—C8−177.7 (3)C8—C22—C23—S112.1 (6)
C4—C6—C7—N3−0.3 (5)C26—S1—C23—C241.5 (3)
C5—C6—C7—N3−179.5 (3)C26—S1—C23—C22−177.6 (3)
C4—C6—C7—C8177.9 (3)C22—C23—C24—C25177.2 (3)
C5—C6—C7—C8−1.3 (5)S1—C23—C24—C25−1.9 (3)
N3—C7—C8—C224.8 (5)C23—C24—C25—C261.4 (4)
C6—C7—C8—C22−173.6 (3)C24—C25—C26—S1−0.2 (5)
N3—C7—C8—C9−177.2 (3)C23—S1—C26—C25−0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C26—H26···N2i0.932.573.445 (3)157
C20—H20···Cg6ii0.932.933.680 (3)139

Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2672).

References

  • Abou, G. H., Mohie, A. S. & Naglaa, A. A. (2001). Indian J. Chem. Sect. B, 40, 213–221.
  • Aleem, G., Yibin, Z., John, J. M. & Roy, L. K. (2002). J. Med. Chem.45, 5173–5181. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blagg, J., Fray, M. J., Lewis, M. L., Mathias, J. P., Stefaniak, M. H. & Stobie, A. (2003). PCT Int. Appl. WO 2003076427 A1 20030918.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • El-Dean, A. M., Aralla, A. A., Mohamed, T. A. & Geies, A. A. (1991). Z. Naturforsch. Teil B, 46, 541–546.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fucini, R. V., Hanan, E. J., Romanowski, M. J., Elling, R. A., Lew, W., Barr, K. J., Zhu, J., Yoburn, J. C., Liu, Y., Fahr, B. T., Fan, J. & Lu, Y. (2008). Bioorg. Med. Chem. Lett.18, 5648–5652. [PubMed]
  • Fujikawa, Y., Suzuki, M., Iwasaki, H., Sakashita, M. & Kitahara, M. (1989). Eur. Pat. Appl. EP 339 358.
  • Fujikawa, Y., Suzuki, M., Iwasaki, H., Sakashita, M. & Kitahara, M. (1990). Chem Abstr 113, 23903.
  • Lynck, B., Khan, M., Teo, H. & Pedrotti, F. (1988). Can. J. Chem.66, 420–428.
  • Ohta, T., Komoriya, S., Yoshino, T., Uoto, K., Nakamoto, Y., Naito, H., Mochizuki, A., Nagata, T., Kanno, H., Haginoya, N., Yoshikawa, K., Nagamochi, M., Kobayashi, S. & Ono, M. (2004). PCT Int. Appl. WO 2004058715 A1 20040715.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Warshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Renock, S. & Xu, K. (2006). Bioorg. Med. Chem. Lett.16, 5687–5690. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography