PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1104.
Published online 2009 April 25. doi:  10.1107/S160053680901410X
PMCID: PMC2977782

(Z)-6-[(5-Chloro-2-hydroxy­anilino)­methyl­ene]-4-methoxy­cyclo­hexa-2,4-dienone 0.25-hydrate

Abstract

The title compound, C14H12ClNO3·0.25H2O, exists in the keto–amine form, and the aromatic rings are oriented at a dihedral angle of 7.24 (7)°. Bifurcated intra­molecular N—H(...)(O,O) hydrogen bonds result in the formation of planar six- and five-membered rings. In the crystal structure, inter­molecular O—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into chains. π–π contacts between benzene rings [centroid–centroid distance = 3.5065 (9) Å] may further stabilize the structure. There also exists a weak C—H(...)π inter­action.

Related literature

For general background, see: Büyükgüngör et al. (2007 [triangle]); Hökelek et al. (2004 [triangle]); Odabaşoğlu et al. (2004 [triangle]). For related structures, see: Özek et al. (2007 [triangle], 2008 [triangle]); Ersanlı et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1104-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO3·0.25H2O
  • M r = 279.95
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1104-efi1.jpg
  • a = 21.3670 (11) Å
  • b = 6.7600 (3) Å
  • c = 17.7404 (9) Å
  • β = 103.841 (4)°
  • V = 2488.0 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 100 K
  • 0.68 × 0.54 × 0.41 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.970, T max = 0.970
  • 6976 measured reflections
  • 2588 independent reflections
  • 2352 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.086
  • S = 1.09
  • 2588 reflections
  • 186 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-RED32 (Stoe & Cie, 2002 [triangle]); data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901410X/hk2658sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901410X/hk2658Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant No. F.279 of the University Research Fund).

supplementary crystallographic information

Comment

As part of our ongoing studies on the syntheses and structural characterizations of Schiff-base compounds (Özek et al., 2008; Özek et al., 2007), we report herein the crystal structure of the title compound.

In general, o-hydroxy Schiff bases exhibit two possible tautomeric forms, namely, phenol-imine and keto-amine. In the solid state, the keto-amine form is observed in naphthaldimine (Odabaşoǧlu et al., 2004), while the phenol-imine form is observed in salicylaldimine (Büyükgüngör et al., 2007) Schiff bases. However, naphthaldimine and salicylaldimine can also exist in the phenol-imine and keto-amine forms, respectively depending on the stereochemistry of the molecule and the type of nitrogen substituents in naphthaldimine and salicylaldimine Schiff bases (Hökelek et al., 2004).

In the title compound (Fig. 1), the keto-amine form is favored over the phenol-imine form, as indicated by C2—O1 [1.2924 (18) Å], C8—N1 [1.3122 (19) Å], C1—C8 [1.412 (2) Å] and C1—C2 [1.433 (2) Å] bonds. The C2—O1 and C8—N1 bonds indicate double-bond and a high degree of single-bond characters, respectively. Similar results were observed for 2-[(2-hydroxy-4-nitrophenyl) -aminomethylene]cyclohexa-3,5-dien-1(2H)-οne [C—O = 1.298 (2) and C—N = 1.308 (2) Å; Ersanlı et al., 2003].

It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound caused by planarity of the molecule; the dihedral angle between rings A (C1—C6) and B (C9—C14) is 7.24 (7)°. Intramolecular N—H···O hydrogen bonds (Table 1) result in the formations of planar six- and five-membered rings C (O1/N1/C1/C2/C8/H1) and D (O3/N1/C9/C10/H1). They are oriented with respect to the adjacent rings at dihedral angles of A/C = 4.44 (9), A/D = 9.6 (9), B/C = 5.42 (9), B/D = 2.96 (9) and C/D = 6.55 (9)°. So, they are nearly coplanar.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the phenyl rings, Cg1—Cg2i [symmetry code: (i) 1/2 - x, 3/2 - y, -z, where Cg1 and Cg2 are centroids of the rings A (C1—C6) and B (C9—C14), respectively] may further stabilize the structure, with centroid-centroid distance of 3.5065 (9) Å. There also exists a weak C—H···π interaction (Table 1).

Experimental

For the preparation of the title compound, the mixture of 5-methoxysalicyl- aldehyde (0.5 g, 3.3 mmol) in ethanol (20 ml) and 2-hydroxy-5-chloroaniline (0.47 g, 3.3 mmol) in ethanol (20 ml) was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from methanol by slow evaporation (yield; % 84, m.p. 415–416 K).

Refinement

H atoms of water molecule and hydroxy group were located in difference Fourier maps and refined isotropically, with restrains of O3—H3A = 0.852 (17) and O4—H4A = 0.831 (19) Å. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms,respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H12ClNO3·0.25H2OF(000) = 1162
Mr = 279.95Dx = 1.495 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6976 reflections
a = 21.3670 (11) Åθ = 2.0–28.0°
b = 6.7600 (3) ŵ = 0.31 mm1
c = 17.7404 (9) ÅT = 100 K
β = 103.841 (4)°Prism, red
V = 2488.0 (2) Å30.68 × 0.54 × 0.41 mm
Z = 8

Data collection

Stoe IPDS-II diffractometer2588 independent reflections
Radiation source: fine-focus sealed tube2352 reflections with I > 2σ(I)
plane graphiteRint = 0.022
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = −25→26
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −8→7
Tmin = 0.970, Tmax = 0.970l = −22→22
6976 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0376P)2 + 3.3917P] where P = (Fo2 + 2Fc2)/3
2588 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = −0.31 e Å3

Special details

Experimental. 141 frames, detector distance = 100 mm
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.64391 (7)0.8209 (2)0.49336 (8)0.0163 (3)
C20.63352 (7)0.6614 (2)0.43854 (8)0.0171 (3)
C30.58193 (7)0.6836 (2)0.37118 (9)0.0191 (3)
H30.57360.58340.33420.023*
C40.54480 (7)0.8493 (2)0.36036 (8)0.0189 (3)
H40.51120.85930.31620.023*
C50.55578 (7)1.0069 (2)0.41439 (8)0.0175 (3)
C60.60491 (7)0.9945 (2)0.47962 (8)0.0170 (3)
H60.61291.09860.51490.020*
C70.51514 (8)1.3060 (2)0.45380 (9)0.0211 (3)
H7A0.50631.24340.49870.032*
H7B0.48321.40550.43490.032*
H7C0.55701.36630.46750.032*
C80.69160 (7)0.8057 (2)0.56359 (8)0.0164 (3)
H80.69870.91250.59760.020*
C90.77299 (7)0.6029 (2)0.65047 (8)0.0158 (3)
C100.79878 (7)0.4110 (2)0.65524 (9)0.0181 (3)
C110.84717 (7)0.3589 (2)0.71999 (9)0.0201 (3)
H110.86450.23210.72380.024*
C120.86950 (7)0.4950 (2)0.77875 (8)0.0190 (3)
H120.90200.46040.82180.023*
C130.84290 (7)0.6831 (2)0.77270 (8)0.0175 (3)
C140.79444 (7)0.7395 (2)0.70949 (8)0.0172 (3)
H140.77670.86570.70660.021*
Cl10.873014 (18)0.85790 (6)0.84450 (2)0.02270 (12)
N10.72613 (6)0.64456 (19)0.58204 (7)0.0165 (3)
H10.71920.55220.54770.020*
O10.66836 (5)0.50302 (16)0.45048 (6)0.0219 (3)
O20.51359 (5)1.16195 (17)0.39490 (6)0.0229 (3)
O30.77355 (5)0.28754 (18)0.59629 (7)0.0236 (3)
H3A0.7990 (11)0.196 (3)0.5898 (15)0.055 (8)*
O40.50000.3573 (10)0.25000.0253 (14)0.25
H4A0.500 (4)0.286 (5)0.2880 (13)0.03 (2)*0.25

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0144 (7)0.0192 (7)0.0150 (6)−0.0005 (6)0.0028 (5)−0.0001 (6)
C20.0154 (7)0.0190 (7)0.0166 (7)0.0000 (6)0.0033 (5)−0.0010 (6)
C30.0184 (7)0.0226 (8)0.0155 (7)−0.0012 (6)0.0023 (6)−0.0039 (6)
C40.0166 (7)0.0262 (8)0.0127 (7)−0.0004 (6)0.0012 (5)0.0000 (6)
C50.0158 (7)0.0202 (7)0.0167 (7)0.0021 (6)0.0043 (5)0.0017 (6)
C60.0173 (7)0.0187 (7)0.0147 (6)0.0001 (6)0.0037 (5)−0.0016 (5)
C70.0221 (8)0.0180 (7)0.0213 (7)0.0030 (6)0.0017 (6)−0.0009 (6)
C80.0142 (7)0.0192 (7)0.0161 (7)−0.0004 (6)0.0045 (5)−0.0018 (6)
C90.0119 (6)0.0217 (7)0.0139 (6)0.0004 (6)0.0031 (5)0.0008 (6)
C100.0165 (7)0.0194 (7)0.0180 (7)0.0003 (6)0.0031 (6)−0.0021 (6)
C110.0178 (7)0.0196 (7)0.0220 (7)0.0035 (6)0.0030 (6)0.0025 (6)
C120.0153 (7)0.0245 (8)0.0158 (7)0.0016 (6)0.0011 (5)0.0043 (6)
C130.0143 (7)0.0235 (8)0.0146 (7)−0.0019 (6)0.0035 (5)−0.0017 (6)
C140.0158 (7)0.0183 (7)0.0166 (7)0.0018 (6)0.0021 (5)0.0009 (6)
Cl10.0219 (2)0.0258 (2)0.01674 (19)0.00025 (14)−0.00266 (14)−0.00406 (14)
N10.0151 (6)0.0184 (6)0.0142 (6)0.0007 (5)0.0001 (5)−0.0018 (5)
O10.0205 (5)0.0206 (6)0.0221 (5)0.0040 (4)0.0002 (4)−0.0053 (4)
O20.0226 (6)0.0233 (6)0.0189 (5)0.0078 (4)−0.0030 (4)−0.0015 (4)
O30.0206 (6)0.0228 (6)0.0238 (6)0.0049 (5)−0.0016 (4)−0.0077 (5)
O40.036 (4)0.021 (3)0.016 (3)0.000−0.001 (3)0.000

Geometric parameters (Å, °)

C1—C81.412 (2)C8—H80.9300
C1—C61.426 (2)C9—C141.389 (2)
C1—C21.433 (2)C9—C101.404 (2)
C2—O11.2924 (18)C9—N11.4050 (18)
C2—C31.427 (2)C10—O31.3459 (18)
C3—C41.359 (2)C10—C111.395 (2)
C3—H30.9300C11—C121.387 (2)
C4—C51.415 (2)C11—H110.9300
C4—H40.9300C12—C131.386 (2)
C5—C61.366 (2)C12—H120.9300
C5—O21.3720 (18)C13—C141.385 (2)
C6—H60.9300C13—Cl11.7438 (15)
C7—O21.4229 (19)C14—H140.9300
C7—H7A0.9600N1—H10.8600
C7—H7B0.9600O3—H3A0.852 (17)
C7—H7C0.9600O4—H4A0.831 (19)
C8—N11.3122 (19)
C8—C1—C6118.69 (13)N1—C8—H8119.2
C8—C1—C2120.36 (14)C1—C8—H8119.2
C6—C1—C2120.91 (13)C14—C9—C10120.98 (13)
O1—C2—C3121.57 (14)C14—C9—N1123.82 (13)
O1—C2—C1121.51 (13)C10—C9—N1115.19 (13)
C3—C2—C1116.90 (14)O3—C10—C11124.28 (14)
C4—C3—C2120.85 (14)O3—C10—C9116.60 (13)
C4—C3—H3119.6C11—C10—C9119.10 (14)
C2—C3—H3119.6C12—C11—C10120.35 (14)
C3—C4—C5121.89 (13)C12—C11—H11119.8
C3—C4—H4119.1C10—C11—H11119.8
C5—C4—H4119.1C13—C12—C11119.30 (13)
C6—C5—O2125.86 (14)C13—C12—H12120.3
C6—C5—C4119.79 (14)C11—C12—H12120.3
O2—C5—C4114.34 (12)C14—C13—C12121.88 (14)
C5—C6—C1119.64 (14)C14—C13—Cl1118.58 (12)
C5—C6—H6120.2C12—C13—Cl1119.49 (11)
C1—C6—H6120.2C13—C14—C9118.37 (14)
O2—C7—H7A109.5C13—C14—H14120.8
O2—C7—H7B109.5C9—C14—H14120.8
H7A—C7—H7B109.5C8—N1—C9128.60 (13)
O2—C7—H7C109.5C8—N1—H1115.7
H7A—C7—H7C109.5C9—N1—H1115.7
H7B—C7—H7C109.5C5—O2—C7116.07 (11)
N1—C8—C1121.66 (14)C10—O3—H3A114.0 (18)
C8—C1—C2—O1−2.1 (2)C14—C9—C10—C11−0.7 (2)
C6—C1—C2—O1−179.69 (14)N1—C9—C10—C11177.86 (14)
C8—C1—C2—C3176.39 (14)O3—C10—C11—C12−178.82 (15)
C6—C1—C2—C3−1.2 (2)C9—C10—C11—C12−0.1 (2)
O1—C2—C3—C4178.48 (14)C10—C11—C12—C130.5 (2)
C1—C2—C3—C40.0 (2)C11—C12—C13—C140.0 (2)
C2—C3—C4—C50.6 (2)C11—C12—C13—Cl1−177.44 (12)
C3—C4—C5—C60.0 (2)C12—C13—C14—C9−0.9 (2)
C3—C4—C5—O2−179.47 (14)Cl1—C13—C14—C9176.63 (11)
O2—C5—C6—C1178.19 (14)C10—C9—C14—C131.2 (2)
C4—C5—C6—C1−1.2 (2)N1—C9—C14—C13−177.27 (14)
C8—C1—C6—C5−175.82 (14)C1—C8—N1—C9−176.94 (14)
C2—C1—C6—C51.8 (2)C14—C9—N1—C8−5.5 (2)
C6—C1—C8—N1175.38 (14)C10—C9—N1—C8175.95 (14)
C2—C1—C8—N1−2.3 (2)C6—C5—O2—C7−10.6 (2)
C14—C9—C10—O3178.07 (14)C4—C5—O2—C7168.79 (13)
N1—C9—C10—O3−3.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.842.5511 (16)140
N1—H1···O30.862.192.6063 (17)109
C3—H3···O40.932.433.279 (5)151
O4—H4A···O2i0.83 (2)2.03 (2)2.842 (3)166 (6)
O3—H3A···O1ii0.85 (2)1.74 (2)2.5652 (16)162 (3)
C12—H12···O2iii0.932.563.4372 (18)157
C7—H7A···Cg1iv0.962.833.644 (2)143

Symmetry codes: (i) x, y−1, z; (ii) −x+3/2, −y+1/2, −z+1; (iii) x+1/2, −y+3/2, z+1/2; (iv) x+1/2, y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2658).

References

  • Büyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1996–o1998.
  • Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601–o602. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. [PubMed]
  • Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142–o144.
  • Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177–o180. [PubMed]
  • Özek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o1613–o1614. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography