PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1094.
Published online 2009 April 22. doi:  10.1107/S1600536809014160
PMCID: PMC2977772

(S)-5-Hexyl-1-[(S)-2-hydr­oxy-1-phenyl­ethyl]-4-meth­oxy-1H-pyrrol-2(5H)-one

Abstract

The title compound, C19H27NO3, was obtained by the reaction of (3S,7aR)-7a-hexyl-7-meth­oxy-3-phenyl-2,3-dihydro­pyrrolo[2,1-b]oxazol-5(7aH)-one and triethyl­silane using titanium(IV) chloride as catalyst. In the mol­ecule, the phenyl and dihydro­pyrrolone rings form a dihedral angle of 83.8 (1)°. O—H(...)O hydrogen-bonding inter­actions lead to the formation of a chain parallel to the a axis.

Related literature

For the bioactivity of methyl tetramates, see: Royles (1995 [triangle]). For the synthesis, see: Jiang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1094-scheme1.jpg

Experimental

Crystal data

  • C19H27NO3
  • M r = 317.42
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1094-efi1.jpg
  • a = 9.6739 (17) Å
  • b = 10.0995 (18) Å
  • c = 17.929 (3) Å
  • V = 1751.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 173 K
  • 0.56 × 0.32 × 0.23 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.956, T max = 0.982
  • 12545 measured reflections
  • 1773 independent reflections
  • 1732 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.079
  • S = 1.13
  • 1773 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014160/bt2921sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014160/bt2921Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Xiamen University Science Found­ation (grant No. XDKJCX20053013) and the Xiamen Science Foundation (grant No. 3502Z20055019) for financial support. The authors also thank Mr Zan-Bin Wei for technical assistance.

supplementary crystallographic information

Comment

Methyl tetramates bearing C-5 methyl substituents are key frameworks found in a number of bioactive natural products, such as dysideapyrrolidone and dolastatin (Royles, 1995). The title compound, (1), is one of the methyl tetramates which were synthesized when we researched the flexible method for the preparation of methyl (S)-5-alkyltetramate derivatives.

The title compound, (1), was obtained by the reaction of (3S,7aR)-7a-hexyl-7-methoxy-3-phenyl-2,3- dihydropyrrolo[2,1-b]oxazol-5(7aH)-one and triethylsilane using titanium (IV) chloride as catalyst. The absolute configuration (S) of the stereocentre C6 remains unchanged during the synthetic procedure. An X-ray crystal structure determination of the molecular structure of compound (1) was carried out to determine its conformation.

The phenyl and dihydropyrrolone rings form a dihedral angle of 83.8 (1)°. O—H···O hydrogen-bonding interactions lead to the formation of a chain parallel to the a axis.

Experimental

The title compound was prepared by a method based on one described by Jiang et al. (2009). To a cooled (-78 °C) solution of (3S,7aR)-7a-hexyl-7-methoxy-3-phenyl-2,3-\ δihydropyrrolo[2,1-b]oxazol-5(7aH)-one (0.230 mmol) in dry dichloromethane (6 ml) was added dropwise a solution of TiCl4 (0.245 mmol), followed by Et3SiH (2.3 mmol) under nitrogen atmosphere. After being stirred at -78 °C for 2 h, the mixture was allowed to react at room temperature and stirred until the completion of the reaction. The mixture was quenched with saturated NaHCO3 solution. The organic layer was separated and the aqueous phase was extracted with CH2Cl2 (3 × 5 ml). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by flash chromatography to give (S)-5-hexyl-1-((S)- 2-hydroxy-1-phenylethyl)-4-methoxy-1H-pyrrol-2(5H)-one as colorless crystals. Single crystals were obtained by slow evaporation of a petroleum ether/ethyl acetate solution.

Refinement

The hydrogen atoms were positioned geometrically (O—H = 0.84Å; C—H = 0.93, 0.98, 0.97 or 0.96Å for phenyl, tertiary, methylene or methyl H atoms respectively) and were included in the refinement in the riding model approximation. The displacement parameters of methyl and hydroxyl H atoms were set to 1.5Ueq(C,O), while those of other H atoms were set to 1.2Ueq(C). In the absence of significant anomalous scattering, Friedel pairs were merged; the absolute configuration was known from the synthesis.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme, showing 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radius.

Crystal data

C19H27NO3F(000) = 688
Mr = 317.42Dx = 1.204 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9516 reflections
a = 9.6739 (17) Åθ = 4.5–56.6°
b = 10.0995 (18) ŵ = 0.08 mm1
c = 17.929 (3) ÅT = 173 K
V = 1751.7 (5) Å3Needle, colorless
Z = 40.56 × 0.32 × 0.23 mm

Data collection

Bruker APEX CCD diffractometer1773 independent reflections
Radiation source: fine-focus sealed tube1732 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −11→11
Tmin = 0.956, Tmax = 0.982k = −12→12
12545 measured reflectionsl = −21→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1818P] where P = (Fo2 + 2Fc2)/3
1773 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.23084 (14)0.27270 (13)0.08925 (7)0.0264 (3)
O20.01267 (12)0.18490 (12)0.08019 (6)0.0339 (3)
C20.09444 (17)0.26555 (17)0.10656 (9)0.0275 (4)
C30.06570 (18)0.36770 (17)0.16165 (9)0.0314 (4)
H3A−0.02230.38830.18210.038*
O40.21692 (13)0.52314 (12)0.22535 (7)0.0381 (3)
C40.18362 (19)0.42683 (16)0.17823 (9)0.0300 (4)
C50.30022 (18)0.37368 (17)0.13261 (9)0.0294 (4)
H5A0.36990.33130.16620.035*
C60.31243 (16)0.17097 (16)0.05156 (9)0.0271 (4)
H6A0.40590.21020.04260.032*
O70.23907 (13)0.24369 (13)−0.07171 (6)0.0393 (3)
H7C0.31670.2780−0.07990.059*
C70.25486 (19)0.13400 (18)−0.02451 (8)0.0324 (4)
H7A0.31770.0694−0.04850.039*
H7B0.16390.0906−0.01790.039*
C80.33410 (18)0.05271 (17)0.10152 (9)0.0293 (4)
C90.2319 (2)−0.04012 (17)0.11356 (10)0.0367 (4)
H9A0.1459−0.03180.08840.044*
C100.2528 (2)−0.14481 (19)0.16160 (11)0.0441 (5)
H10A0.1815−0.20810.16920.053*
C110.3763 (2)−0.1579 (2)0.19852 (12)0.0483 (5)
H11A0.3907−0.22970.23180.058*
C120.4785 (2)−0.0666 (2)0.18692 (11)0.0460 (5)
H12A0.5640−0.07510.21250.055*
C130.45838 (19)0.03788 (19)0.13829 (9)0.0360 (4)
H13A0.53070.09990.13010.043*
C140.37058 (18)0.47889 (17)0.08519 (10)0.0329 (4)
H14A0.41890.54160.11870.039*
H14B0.44150.43550.05380.039*
C150.27425 (19)0.55665 (18)0.03513 (10)0.0351 (4)
H15A0.21640.49410.00630.042*
H15B0.21200.61110.06640.042*
C160.3508 (2)0.64551 (19)−0.01812 (11)0.0401 (4)
H16A0.41000.70650.01090.048*
H16B0.41210.5905−0.04970.048*
C170.2578 (2)0.7259 (2)−0.06785 (10)0.0421 (4)
H17A0.20780.7914−0.03680.050*
H17B0.18810.6662−0.09030.050*
C180.3319 (2)0.79856 (19)−0.12980 (11)0.0446 (5)
H18A0.40070.8594−0.10750.054*
H18B0.38280.7334−0.16060.054*
C190.2366 (2)0.8770 (2)−0.17945 (11)0.0494 (5)
H19A0.29080.9214−0.21830.074*
H19B0.18770.9434−0.14960.074*
H19C0.16950.8173−0.20270.074*
C200.1077 (2)0.5705 (2)0.27166 (10)0.0457 (5)
H20A0.14270.64110.30410.069*
H20B0.07230.49770.30230.069*
H20C0.03300.60540.24040.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0263 (7)0.0264 (7)0.0263 (6)−0.0003 (6)0.0015 (5)−0.0016 (6)
O20.0273 (6)0.0347 (6)0.0398 (6)−0.0034 (6)0.0012 (5)0.0020 (5)
C20.0272 (8)0.0288 (8)0.0264 (7)0.0012 (7)−0.0001 (6)0.0078 (7)
C30.0313 (8)0.0318 (8)0.0310 (8)0.0057 (8)0.0072 (7)0.0056 (7)
O40.0436 (7)0.0378 (7)0.0329 (6)0.0052 (6)0.0017 (6)−0.0096 (5)
C40.0388 (9)0.0287 (8)0.0224 (7)0.0058 (7)0.0008 (7)0.0018 (7)
C50.0290 (8)0.0308 (8)0.0284 (8)0.0025 (7)−0.0025 (7)−0.0024 (7)
C60.0243 (8)0.0289 (8)0.0281 (8)0.0003 (7)0.0019 (6)−0.0037 (7)
O70.0343 (6)0.0530 (8)0.0307 (6)0.0012 (6)−0.0036 (5)0.0045 (6)
C70.0314 (8)0.0381 (9)0.0275 (8)−0.0015 (8)0.0000 (7)−0.0037 (7)
C80.0313 (8)0.0287 (8)0.0278 (8)0.0034 (7)0.0031 (7)−0.0057 (7)
C90.0338 (9)0.0325 (9)0.0436 (9)0.0001 (8)−0.0015 (8)−0.0013 (8)
C100.0493 (11)0.0299 (9)0.0532 (11)−0.0018 (9)0.0058 (10)0.0034 (8)
C110.0597 (13)0.0384 (10)0.0468 (11)0.0123 (10)0.0018 (10)0.0090 (9)
C120.0426 (11)0.0520 (11)0.0433 (10)0.0109 (10)−0.0065 (9)0.0057 (10)
C130.0341 (9)0.0378 (9)0.0360 (8)0.0014 (8)−0.0007 (7)−0.0018 (8)
C140.0284 (8)0.0334 (9)0.0370 (9)−0.0021 (8)0.0019 (7)−0.0065 (7)
C150.0346 (9)0.0349 (9)0.0358 (8)−0.0044 (8)0.0029 (8)−0.0008 (7)
C160.0397 (10)0.0374 (10)0.0433 (10)−0.0016 (8)0.0088 (8)0.0020 (8)
C170.0441 (11)0.0431 (10)0.0390 (9)−0.0063 (9)0.0020 (9)0.0034 (8)
C180.0523 (11)0.0360 (9)0.0455 (10)0.0029 (9)0.0133 (9)0.0044 (9)
C190.0588 (13)0.0482 (11)0.0413 (10)−0.0072 (11)−0.0008 (10)0.0069 (9)
C200.0594 (12)0.0422 (10)0.0355 (9)0.0112 (10)0.0099 (9)−0.0067 (8)

Geometric parameters (Å, °)

N1—C21.357 (2)C11—H11A0.9500
N1—C51.447 (2)C12—C131.383 (3)
N1—C61.461 (2)C12—H12A0.9500
O2—C21.230 (2)C13—H13A0.9500
C2—C31.455 (2)C14—C151.513 (3)
C3—C41.321 (3)C14—H14A0.9900
C3—H3A0.9500C14—H14B0.9900
O4—C41.328 (2)C15—C161.505 (2)
O4—C201.426 (2)C15—H15A0.9900
C4—C51.493 (2)C15—H15B0.9900
C5—C141.522 (2)C16—C171.505 (3)
C5—H5A1.0000C16—H16A0.9900
C6—C81.508 (2)C16—H16B0.9900
C6—C71.520 (2)C17—C181.512 (3)
C6—H6A1.0000C17—H17A0.9900
O7—C71.402 (2)C17—H17B0.9900
O7—H7C0.8400C18—C191.507 (3)
C7—H7A0.9900C18—H18A0.9900
C7—H7B0.9900C18—H18B0.9900
C8—C131.379 (2)C19—H19A0.9800
C8—C91.380 (2)C19—H19B0.9800
C9—C101.379 (3)C19—H19C0.9800
C9—H9A0.9500C20—H20A0.9800
C10—C111.372 (3)C20—H20B0.9800
C10—H10A0.9500C20—H20C0.9800
C11—C121.368 (3)
C2—N1—C5111.43 (14)C13—C12—H12A119.7
C2—N1—C6126.40 (14)C8—C13—C12120.46 (18)
C5—N1—C6119.56 (13)C8—C13—H13A119.8
O2—C2—N1124.93 (16)C12—C13—H13A119.8
O2—C2—C3127.41 (15)C15—C14—C5114.73 (14)
N1—C2—C3107.65 (15)C15—C14—H14A108.6
C4—C3—C2107.94 (15)C5—C14—H14A108.6
C4—C3—H3A126.0C15—C14—H14B108.6
C2—C3—H3A126.0C5—C14—H14B108.6
C4—O4—C20115.87 (15)H14A—C14—H14B107.6
C3—C4—O4133.12 (16)C16—C15—C14112.50 (15)
C3—C4—C5111.50 (14)C16—C15—H15A109.1
O4—C4—C5115.37 (15)C14—C15—H15A109.1
N1—C5—C4101.38 (13)C16—C15—H15B109.1
N1—C5—C14113.54 (13)C14—C15—H15B109.1
C4—C5—C14113.14 (14)H15A—C15—H15B107.8
N1—C5—H5A109.5C17—C16—C15113.79 (16)
C4—C5—H5A109.5C17—C16—H16A108.8
C14—C5—H5A109.5C15—C16—H16A108.8
N1—C6—C8110.93 (12)C17—C16—H16B108.8
N1—C6—C7112.95 (13)C15—C16—H16B108.8
C8—C6—C7112.93 (13)H16A—C16—H16B107.7
N1—C6—H6A106.5C16—C17—C18114.42 (17)
C8—C6—H6A106.5C16—C17—H17A108.7
C7—C6—H6A106.5C18—C17—H17A108.7
C7—O7—H7C109.5C16—C17—H17B108.7
O7—C7—C6112.79 (13)C18—C17—H17B108.7
O7—C7—H7A109.0H17A—C17—H17B107.6
C6—C7—H7A109.0C19—C18—C17113.52 (18)
O7—C7—H7B109.0C19—C18—H18A108.9
C6—C7—H7B109.0C17—C18—H18A108.9
H7A—C7—H7B107.8C19—C18—H18B108.9
C13—C8—C9118.44 (16)C17—C18—H18B108.9
C13—C8—C6119.42 (16)H18A—C18—H18B107.7
C9—C8—C6122.11 (16)C18—C19—H19A109.5
C10—C9—C8120.91 (18)C18—C19—H19B109.5
C10—C9—H9A119.5H19A—C19—H19B109.5
C8—C9—H9A119.5C18—C19—H19C109.5
C11—C10—C9120.20 (19)H19A—C19—H19C109.5
C11—C10—H10A119.9H19B—C19—H19C109.5
C9—C10—H10A119.9O4—C20—H20A109.5
C12—C11—C10119.41 (18)O4—C20—H20B109.5
C12—C11—H11A120.3H20A—C20—H20B109.5
C10—C11—H11A120.3O4—C20—H20C109.5
C11—C12—C13120.57 (19)H20A—C20—H20C109.5
C11—C12—H12A119.7H20B—C20—H20C109.5
C5—N1—C2—O2−176.98 (14)C5—N1—C6—C7−142.17 (14)
C6—N1—C2—O2−15.5 (3)N1—C6—C7—O755.07 (19)
C5—N1—C2—C32.15 (18)C8—C6—C7—O7−178.04 (14)
C6—N1—C2—C3163.58 (13)N1—C6—C8—C13−100.67 (18)
O2—C2—C3—C4175.95 (16)C7—C6—C8—C13131.38 (16)
N1—C2—C3—C4−3.15 (18)N1—C6—C8—C977.47 (18)
C2—C3—C4—O4−178.40 (17)C7—C6—C8—C9−50.5 (2)
C2—C3—C4—C52.92 (19)C13—C8—C9—C100.5 (3)
C20—O4—C4—C34.1 (3)C6—C8—C9—C10−177.68 (16)
C20—O4—C4—C5−177.24 (15)C8—C9—C10—C110.2 (3)
C2—N1—C5—C4−0.46 (17)C9—C10—C11—C12−0.3 (3)
C6—N1—C5—C4−163.32 (13)C10—C11—C12—C13−0.2 (3)
C2—N1—C5—C14−122.12 (15)C9—C8—C13—C12−1.0 (3)
C6—N1—C5—C1475.02 (18)C6—C8—C13—C12177.17 (16)
C3—C4—C5—N1−1.61 (18)C11—C12—C13—C80.9 (3)
O4—C4—C5—N1179.46 (13)N1—C5—C14—C1560.86 (19)
C3—C4—C5—C14120.33 (16)C4—C5—C14—C15−53.98 (19)
O4—C4—C5—C14−58.60 (19)C5—C14—C15—C16−171.94 (15)
C2—N1—C6—C8−70.19 (19)C14—C15—C16—C17−179.05 (15)
C5—N1—C6—C889.88 (17)C15—C16—C17—C18−170.57 (17)
C2—N1—C6—C757.8 (2)C16—C17—C18—C19179.28 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7C···O2i0.841.932.7475 (18)163

Symmetry codes: (i) x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2921).

References

  • Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jiang, L. J., Lan, H. Q., Zheng, J. F., Ye, J.-L. & Huang, P. Q. (2009). Synlett. pp. 297–301.
  • Royles, B. J. L. (1995). Chem. Rev.95, 1981–2001.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography