PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1081.
Published online 2009 April 22. doi:  10.1107/S1600536809013403
PMCID: PMC2977760

1-Carboxy­methyl-2-ethyl-4-methyl-1H-imidazol-3-ium chloride monohydrate

Abstract

In the title compound, C8H13N2O2 +·Cl·H2O, the methyl C atom of the ethyl group is slightly out of the imidazole plane, with an N—C(ring)—C—C torsion angle of −15.1 (2)°. In the crystal structure, there are strong inter­molecular hydrogen-bonding inter­actions between the solvent water mol­ecule, the free chloride anion and the organic cation, resulting in a two-dimensional supra­molecular network in the ab plane.

Related literature

The title compound is a vital intermediate in the synthesis of bisphosphonic acid, i.e. 2-(2-ethyl-4-methyl-1H-imidazol-1-yl)-1-hydroxyethane-1,1-diyldiphosphonic acid; for a general background on bis­phospho­nates, see: Dawson (2003 [triangle]); Vasireddy et al. (2003 [triangle]). For related structures, see: Gao et al. (2004 [triangle]); Barczynski et al. (2008 [triangle]). For the synthesis, see: Zederenko et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1081-scheme1.jpg

Experimental

Crystal data

  • C8H13N2O2 +·Cl·H2O
  • M r = 222.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1081-efi1.jpg
  • a = 11.077 (2) Å
  • b = 8.4542 (18) Å
  • c = 11.938 (3) Å
  • β = 90.265 (3)°
  • V = 1117.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 93 K
  • 0.40 × 0.40 × 0.35 mm

Data collection

  • Rigaku SPIDER diffractometer
  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2004 [triangle]) T min = 0.880, T max = 0.894
  • 8869 measured reflections
  • 2532 independent reflections
  • 2203 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.099
  • S = 1.00
  • 2532 reflections
  • 145 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013403/fj2205sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013403/fj2205Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Wu Jieping Medical Fund (32067500615) and the National Natural Science Foundation of China (No. 20801024).

supplementary crystallographic information

Comment

Bisphosphonates with an imidazole ring, namely zoledronate, are effective bone-specific palliative treatments that reduce tumor-induced skeletal complications. With this idea in mind, we intend to synthesis one of the third-generation bisphosphonate compound, 2-(2-ethyl-4-methyl-1H-imidazol-1-yl)-1–1-hydroxyethane-1,1- bisphosphonic acid, which is potentially used for treatment of patients. As a vital intermediate compound for the stepwise reactions of the bisphosphonic acid, the synthesis and crystal structure of the title compound has been reported herein.

In the title compound (I) (Fig. 1), C8H13N2O2+.Cl-.H2O, all the carbon atoms (C4, C5 and C7) linked to the imidazole ring are almost coplanar with the imidazole ring. The ethyl is slightly out of the imidazole plane with an N1—C3(ring)-C5—C6 torsion angle of -15.116 (211)°. While the 1-substituted acetic acid group is approximately perpendicular to the imidazole ring [dihedral angle = 77.438 (111)°]. There are strong intermolecular hydrogen interactions between the free water molecule (O3), the free chloride anion (Cl1), and the O1 and N1 from the organic cation (Table 1). And the crystal structure is stabilized by these strong hydrogen bond interactions to form two-dimensional supramolecular network along ab plane (Table 1 and Fig. 2).

Experimental

The title compound (I) was synthesized according to previous literature (Zederenko et al., 1994). After reaction, a white powder was obtained (yield 65%). Mp 170–171 °C. Then, compound (I) was recrystallized from acetone solvent; colourless block-shaped crystals were formed after several days (yield 61%). Analysis calculated for C8H15ClN2O3: 43.15, H 6.79, N 12.58%; found: C 43.01, H 6.96, N 12.45%.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Perspective view of the supramolecular network built from strong intermolecular hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted.

Crystal data

C8H13N2O2+·Cl·H2OF(000) = 472
Mr = 222.67Dx = 1.323 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3544 reflections
a = 11.077 (2) Åθ = 3.0–27.5°
b = 8.4542 (18) ŵ = 0.33 mm1
c = 11.938 (3) ÅT = 93 K
β = 90.265 (3)°Block, colorless
V = 1117.9 (4) Å30.40 × 0.40 × 0.35 mm
Z = 4

Data collection

Rigaku SPIDER diffractometer2532 independent reflections
Radiation source: Rotating Anode2203 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2004)h = −13→14
Tmin = 0.880, Tmax = 0.894k = −10→10
8869 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0582P)2 + 0.06P] where P = (Fo2 + 2Fc2)/3
2532 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.19761 (3)0.57092 (4)0.31835 (3)0.02509 (14)
O10.88525 (10)0.95264 (13)0.14174 (10)0.0295 (3)
O20.79630 (9)0.72040 (13)0.17923 (9)0.0273 (3)
O30.40590 (10)0.32662 (16)0.33959 (12)0.0382 (3)
N10.42391 (11)0.70595 (14)0.18900 (10)0.0184 (3)
N20.57147 (10)0.84373 (14)0.12622 (10)0.0184 (3)
C10.42085 (12)0.68984 (18)0.07348 (12)0.0210 (3)
C20.51409 (12)0.77535 (17)0.03442 (12)0.0211 (3)
H20.53660.7869−0.04180.025*
C30.51465 (12)0.79974 (16)0.21927 (12)0.0178 (3)
C40.32597 (14)0.5958 (2)0.01537 (14)0.0292 (4)
H4A0.34260.5934−0.06520.035*
H4B0.24690.64450.02810.035*
H4C0.32580.48770.04490.035*
C50.54916 (13)0.84647 (19)0.33464 (12)0.0234 (3)
H5A0.56770.96100.33550.028*
H5B0.62360.78910.35620.028*
C60.45261 (15)0.8131 (2)0.42068 (13)0.0304 (4)
H6A0.37890.87100.40080.037*
H6B0.48090.84730.49470.037*
H6C0.43550.69940.42220.037*
C70.67760 (12)0.94450 (17)0.12097 (12)0.0202 (3)
H7A0.66721.03450.17310.024*
H7B0.68490.98790.04430.024*
C80.79233 (12)0.85727 (18)0.15091 (12)0.0205 (3)
H1N0.3693 (15)0.667 (2)0.2348 (14)0.027 (4)*
H1O0.961 (2)0.900 (3)0.1558 (18)0.060 (7)*
H3A0.344 (2)0.397 (3)0.336 (2)0.077 (8)*
H3B0.385 (2)0.243 (3)0.289 (2)0.067 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0190 (2)0.0276 (2)0.0287 (2)−0.00309 (14)0.00545 (15)−0.00028 (14)
O10.0168 (5)0.0245 (6)0.0472 (7)−0.0020 (5)0.0009 (5)0.0008 (5)
O20.0199 (5)0.0236 (6)0.0384 (6)0.0035 (4)0.0019 (5)0.0087 (5)
O30.0206 (6)0.0333 (7)0.0605 (9)0.0012 (5)−0.0053 (6)−0.0059 (6)
N10.0141 (6)0.0215 (6)0.0196 (6)−0.0007 (5)0.0018 (5)−0.0005 (5)
N20.0139 (6)0.0212 (6)0.0202 (6)0.0015 (5)0.0002 (5)0.0007 (5)
C10.0162 (7)0.0250 (8)0.0220 (7)0.0033 (6)−0.0002 (6)−0.0028 (6)
C20.0178 (7)0.0276 (8)0.0178 (7)0.0040 (6)0.0004 (5)−0.0008 (6)
C30.0139 (6)0.0179 (7)0.0217 (7)0.0029 (5)0.0018 (5)−0.0005 (5)
C40.0202 (8)0.0392 (10)0.0281 (8)−0.0016 (7)−0.0013 (6)−0.0088 (7)
C50.0236 (8)0.0269 (8)0.0197 (7)−0.0040 (6)−0.0004 (6)−0.0027 (6)
C60.0303 (9)0.0381 (10)0.0229 (8)−0.0054 (7)0.0031 (7)−0.0040 (7)
C70.0165 (7)0.0195 (7)0.0247 (7)−0.0007 (6)0.0021 (6)0.0018 (5)
C80.0173 (7)0.0232 (8)0.0211 (7)−0.0001 (6)0.0021 (6)−0.0003 (6)

Geometric parameters (Å, °)

O1—C81.3125 (18)C3—C51.481 (2)
O1—H1O0.96 (2)C4—H4A0.9800
O2—C81.2063 (18)C4—H4B0.9800
O3—H3A0.91 (2)C4—H4C0.9800
O3—H3B0.96 (2)C5—C61.513 (2)
N1—C31.3290 (18)C5—H5A0.9900
N1—C11.3860 (18)C5—H5B0.9900
N1—H1N0.881 (17)C6—H6A0.9800
N2—C31.3322 (18)C6—H6B0.9800
N2—C21.3903 (18)C6—H6C0.9800
N2—C71.4534 (18)C7—C81.5109 (19)
C1—C21.346 (2)C7—H7A0.9900
C1—C41.487 (2)C7—H7B0.9900
C2—H20.9500
C8—O1—H1O112.3 (13)H4B—C4—H4C109.5
H3A—O3—H3B106.1 (16)C3—C5—C6113.66 (12)
C3—N1—C1110.13 (12)C3—C5—H5A108.8
C3—N1—H1N125.1 (11)C6—C5—H5A108.8
C1—N1—H1N124.5 (11)C3—C5—H5B108.8
C3—N2—C2108.97 (12)C6—C5—H5B108.8
C3—N2—C7125.80 (12)H5A—C5—H5B107.7
C2—N2—C7125.22 (12)C5—C6—H6A109.5
C2—C1—N1106.06 (12)C5—C6—H6B109.5
C2—C1—C4131.87 (14)H6A—C6—H6B109.5
N1—C1—C4122.06 (13)C5—C6—H6C109.5
C1—C2—N2107.40 (13)H6A—C6—H6C109.5
C1—C2—H2126.3H6B—C6—H6C109.5
N2—C2—H2126.3N2—C7—C8112.54 (12)
N1—C3—N2107.43 (12)N2—C7—H7A109.1
N1—C3—C5127.13 (13)C8—C7—H7A109.1
N2—C3—C5125.44 (13)N2—C7—H7B109.1
C1—C4—H4A109.5C8—C7—H7B109.1
C1—C4—H4B109.5H7A—C7—H7B107.8
H4A—C4—H4B109.5O2—C8—O1125.81 (14)
C1—C4—H4C109.5O2—C8—C7124.34 (13)
H4A—C4—H4C109.5O1—C8—C7109.85 (13)
C3—N1—C1—C20.88 (16)C7—N2—C3—N1−178.83 (12)
C3—N1—C1—C4−177.84 (13)C2—N2—C3—C5179.31 (13)
N1—C1—C2—N2−0.76 (16)C7—N2—C3—C50.3 (2)
C4—C1—C2—N2177.78 (15)N1—C3—C5—C6−15.1 (2)
C3—N2—C2—C10.40 (16)N2—C3—C5—C6165.88 (14)
C7—N2—C2—C1179.39 (13)C3—N2—C7—C877.86 (17)
C1—N1—C3—N2−0.63 (16)C2—N2—C7—C8−100.96 (15)
C1—N1—C3—C5−179.78 (14)N2—C7—C8—O2−2.0 (2)
C2—N2—C3—N10.14 (15)N2—C7—C8—O1178.25 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.881 (17)2.300 (18)3.1635 (14)166.6 (15)
O3—H3A···Cl10.91 (2)2.20 (2)3.1062 (14)177 (2)
O1—H1O···O3i0.96 (2)1.60 (2)2.5557 (16)170 (2)
O3—H3B···Cl1ii0.96 (2)2.14 (2)3.0860 (14)168 (2)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2205).

References

  • Barczynski, P., Komasa, A., Ratajczak-Sitarz, M., Katrusiak, A., Huczynki, A. & Brzezinski, B. (2008). J. Mol. Struct.876, 170–176.
  • Dawson, N. A. (2003). Exp. Opin. Pharmacother.4, 705–716. [PubMed]
  • Gao, S., Zhao, H., Huo, L.-H., Gao, J.-S., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, o1391–o1393.
  • Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vasireddy, S., Talwakar, A., Miller, H., Mehan, H. & David, R. S. (2003). Clin. Rheumatol.22, 376–380. [PubMed]
  • Zederenko, P., Gil, M. S. & Ballesteros, P. (1994). J. Org. Chem.59, 6268–6273.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography