PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1079.
Published online 2009 April 22. doi:  10.1107/S1600536809014196
PMCID: PMC2977758

4-Ethyl­amino-3-nitro­benzoic acid

Abstract

In the title compound, C9H10N2O4, an intra­molecular N—H(...)O hydrogen-bond inter­action generates an S(6) ring motif. The nitro group is slightly twisted away from its attached benzene ring [dihedral angle = 15.29 (15)°]. In the crystal structure, mol­ecules are stacked down the a axis caused by short O(...)O(−1−x, −y, 2−z) contacts of 2.6481 (16) Å involving the O atoms of the nitro groups. The crystal packing is consolidated by inter­molecular O—H(...)O hydrogen bonds, linking the mol­ecules into centrosymmetric dimers.

Related literature

For reference bond lengths, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For information on the use of derivatives of nitro benzoic acid as precursors for heterocyclic compounds of biological inter­est, see: Ishida et al. (2006 [triangle]). For related structures, see: Mohd. Maidin et al. (2008 [triangle]); Narendra Babu et al. (2009 [triangle]). For the synthesis of ethyl 4-ethylamino-3-nitrobenzoate, see: Li et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1079-scheme1.jpg

Experimental

Crystal data

  • C9H10N2O4
  • M r = 210.19
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1079-efi1.jpg
  • a = 3.9354 (4) Å
  • b = 8.4741 (9) Å
  • c = 13.8106 (15) Å
  • α = 89.256 (5)°
  • β = 84.730 (4)°
  • γ = 82.304 (4)°
  • V = 454.49 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 120 K
  • 0.45 × 0.05 × 0.03 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.918, T max = 0.996
  • 7604 measured reflections
  • 2410 independent reflections
  • 1903 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.121
  • S = 1.06
  • 2410 reflections
  • 142 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014196/sj2618sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014196/sj2618Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SNNB, ASAR and SAH gratefully acknowledge funding from the Malaysian government and Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815026). SNNB thanks USM for the Postdoctoral Research Fellowship. HKF and CKQ thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a USM Fellowship.

supplementary crystallographic information

Comment

The derivatives of nitro benzoic acid are convenient precursors for the synthesis of various heterocyclic compounds of biological interest (Ishida et al., 2006). As part of our ongoing studies on new nitro benzoic acid derivatives (Mohd. Maidin et al., 2008; Narendra Babu et al., 2009), we herein present the crystal structure of the title compound.

The molecular structure is stabilized by an intramolecular N2—H1N2···O1 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles in the molecule (Fig. 1) are within normal ranges. The nitro groups are slightly twisted away from the attached benzene ring as indicated by the torsion angles O1—N1—C2—C1 and O2—N1—C2—C3 being 165.34 (12)° and 165.04 (12)°, respectively.

In the crystal structure, (Fig. 2), the crystal packing is consolidated by an intermolecular O4—H1O4···O3i hydrogen bond linking the molecules into dimers. There is a short O1···O1 contact (symmetry code: - 1 - x, - y, 2 - z) with distance = 2.6481 (16) which is shorter than the sum of van der Waals radii of the oxygen atoms, stacking the molecules along the a axis.

Experimental

Ethyl 4-ethylamino-3-nitro-benzoate (1.80 g, 0.0075 mol) (Li et al., 2009), and KOH (0.42 g, 0.0075 mol) was refluxed in aqueous ethanol (25 ml) for 3 h. After completion of the reaction, ethanol was distilled off and the reaction mixture was diluted with water (20 ml). The aqueous layer was washed with dichloromethane (10 x 2 ml) and then acidified with concentrated hydrochloric acid to afford a yellow precipitate as the crude product. Recrystallization of the crude product from hot ethyl acetate gave the title compound as yellow crystals suitable for X-ray analysis.

Refinement

The H-atom attached to N2 was located from the difference Fourier map and refined freely. H atoms of the hydroxy groups were positioned using a rotating group model and constrained with a fixed distance of 0.82 Å. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was also applied for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The dashed line indicates an intramolecular hydrogen bond.
Fig. 2.
The crystal packing of the title compound,viewed along the a axis. Hydrogen bonds and the short O···O contacts are shown as dashed lines.

Crystal data

C9H10N2O4Z = 2
Mr = 210.19F(000) = 220
Triclinic, P1Dx = 1.536 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.9354 (4) ÅCell parameters from 3018 reflections
b = 8.4741 (9) Åθ = 1.5–29.0°
c = 13.8106 (15) ŵ = 0.12 mm1
α = 89.256 (5)°T = 120 K
β = 84.730 (4)°Needle, yellow
γ = 82.304 (4)°0.45 × 0.05 × 0.03 mm
V = 454.49 (8) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2410 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 29.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −5→5
Tmin = 0.918, Tmax = 0.996k = −11→11
7604 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0647P)2 + 0.1132P] where P = (Fo2 + 2Fc2)/3
2410 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat [Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107] operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.2816 (3)0.09151 (12)0.95790 (7)0.0267 (3)
O20.0296 (3)0.28327 (12)0.93767 (7)0.0260 (3)
O30.3986 (3)0.31078 (13)0.49289 (7)0.0302 (3)
O40.3740 (3)0.47173 (12)0.62170 (8)0.0272 (3)
H1O40.44930.53040.57970.041*
N1−0.0961 (3)0.17166 (13)0.90601 (8)0.0175 (2)
N2−0.2305 (3)−0.12944 (13)0.82002 (8)0.0174 (2)
C10.1130 (3)0.24569 (15)0.74460 (9)0.0164 (3)
H1A0.15010.34130.77140.020*
C2−0.0252 (3)0.13158 (15)0.80371 (9)0.0155 (3)
C3−0.0921 (3)−0.01649 (14)0.76646 (9)0.0152 (3)
C40.0068 (3)−0.04224 (15)0.66528 (9)0.0179 (3)
H4A−0.0235−0.13810.63740.021*
C50.1453 (4)0.07084 (16)0.60827 (9)0.0186 (3)
H5A0.20770.04960.54270.022*
C60.1956 (3)0.21795 (15)0.64634 (9)0.0175 (3)
C70.3311 (4)0.34040 (16)0.58304 (10)0.0194 (3)
C8−0.2853 (4)−0.28286 (15)0.78103 (10)0.0177 (3)
H8A−0.0688−0.33750.75160.021*
H8B−0.4447−0.26570.73120.021*
C9−0.4293 (4)−0.38448 (16)0.86180 (10)0.0206 (3)
H9A−0.4684−0.48410.83550.031*
H9B−0.6428−0.32990.89100.031*
H9C−0.2680−0.40380.91010.031*
H1N2−0.299 (5)−0.109 (2)0.8778 (14)0.030 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0407 (6)0.0221 (5)0.0181 (5)−0.0142 (4)0.0083 (4)−0.0012 (4)
O20.0395 (6)0.0233 (5)0.0178 (5)−0.0145 (4)−0.0011 (4)−0.0033 (4)
O30.0478 (7)0.0288 (6)0.0155 (5)−0.0165 (5)0.0056 (4)0.0006 (4)
O40.0415 (7)0.0199 (5)0.0215 (5)−0.0142 (4)0.0048 (4)0.0009 (4)
N10.0222 (6)0.0146 (5)0.0155 (5)−0.0032 (4)−0.0002 (4)0.0006 (4)
N20.0236 (6)0.0144 (5)0.0147 (5)−0.0057 (4)0.0004 (4)0.0001 (4)
C10.0179 (6)0.0142 (6)0.0176 (6)−0.0044 (5)−0.0013 (5)0.0004 (5)
C20.0181 (6)0.0151 (6)0.0133 (6)−0.0025 (5)−0.0007 (5)0.0002 (4)
C30.0150 (6)0.0142 (6)0.0165 (6)−0.0018 (5)−0.0023 (5)0.0011 (5)
C40.0215 (7)0.0165 (6)0.0162 (6)−0.0047 (5)−0.0016 (5)−0.0022 (5)
C50.0215 (7)0.0204 (6)0.0143 (6)−0.0056 (5)0.0007 (5)−0.0008 (5)
C60.0196 (7)0.0166 (6)0.0166 (6)−0.0050 (5)0.0002 (5)0.0014 (5)
C70.0232 (7)0.0192 (6)0.0166 (6)−0.0070 (5)0.0007 (5)0.0013 (5)
C80.0211 (7)0.0147 (6)0.0179 (6)−0.0051 (5)−0.0016 (5)−0.0010 (5)
C90.0246 (7)0.0164 (6)0.0218 (7)−0.0071 (5)−0.0016 (5)0.0007 (5)

Geometric parameters (Å, °)

O1—N11.2375 (14)C3—C41.4273 (18)
O2—N11.2273 (14)C4—C51.3700 (18)
O3—C71.2700 (17)C4—H4A0.9300
O4—C71.2784 (16)C5—C61.4043 (18)
O4—H1O40.8200C5—H5A0.9300
N1—C21.4506 (16)C6—C71.4711 (18)
N2—C31.3441 (16)C8—C91.5155 (18)
N2—C81.4634 (16)C8—H8A0.9700
N2—H1N20.832 (19)C8—H8B0.9700
C1—C61.3818 (18)C9—H9A0.9600
C1—C21.3914 (17)C9—H9B0.9600
C1—H1A0.9300C9—H9C0.9600
C2—C31.4278 (17)
C7—O4—H1O4109.5C4—C5—H5A119.2
O2—N1—O1122.64 (11)C6—C5—H5A119.2
O2—N1—C2118.90 (11)C1—C6—C5118.53 (12)
O1—N1—C2118.46 (10)C1—C6—C7120.64 (12)
C3—N2—C8123.74 (11)C5—C6—C7120.83 (12)
C3—N2—H1N2117.9 (13)O3—C7—O4123.29 (12)
C8—N2—H1N2118.3 (13)O3—C7—C6118.53 (12)
C6—C1—C2120.49 (12)O4—C7—C6118.18 (12)
C6—C1—H1A119.8N2—C8—C9109.98 (11)
C2—C1—H1A119.8N2—C8—H8A109.7
C1—C2—C3122.29 (11)C9—C8—H8A109.7
C1—C2—N1115.93 (11)N2—C8—H8B109.7
C3—C2—N1121.78 (11)C9—C8—H8B109.7
N2—C3—C4120.00 (11)H8A—C8—H8B108.2
N2—C3—C2124.66 (12)C8—C9—H9A109.5
C4—C3—C2115.33 (11)C8—C9—H9B109.5
C5—C4—C3121.59 (12)H9A—C9—H9B109.5
C5—C4—H4A119.2C8—C9—H9C109.5
C3—C4—H4A119.2H9A—C9—H9C109.5
C4—C5—C6121.69 (12)H9B—C9—H9C109.5
C6—C1—C2—C3−0.9 (2)N2—C3—C4—C5179.34 (13)
C6—C1—C2—N1178.84 (11)C2—C3—C4—C5−2.10 (19)
O2—N1—C2—C1−14.67 (18)C3—C4—C5—C6−0.3 (2)
O1—N1—C2—C1165.34 (12)C2—C1—C6—C5−1.6 (2)
O2—N1—C2—C3165.04 (12)C2—C1—C6—C7177.98 (12)
O1—N1—C2—C3−14.95 (19)C4—C5—C6—C12.2 (2)
C8—N2—C3—C40.74 (19)C4—C5—C6—C7−177.39 (13)
C8—N2—C3—C2−177.68 (12)C1—C6—C7—O3−178.93 (12)
C1—C2—C3—N2−178.83 (12)C5—C6—C7—O30.7 (2)
N1—C2—C3—N21.5 (2)C1—C6—C7—O40.9 (2)
C1—C2—C3—C42.69 (19)C5—C6—C7—O4−179.51 (13)
N1—C2—C3—C4−177.01 (11)C3—N2—C8—C9177.29 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H1O4···O3i0.821.802.6092 (15)168
N2—H1N2···O10.831 (19)2.052 (18)2.6634 (15)130.0 (16)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2618).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ishida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett.16, 1859–1863. [PubMed]
  • Li, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o227. [PMC free article] [PubMed]
  • Mohd. Maidin, S. M., Abdul Rahim, A. S., Abdul Hamid, S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1501–o1502. [PMC free article] [PubMed]
  • Narendra Babu, S. N., Abdul Rahim, A. S., Osman, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o556. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography