PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1075.
Published online 2009 April 18. doi:  10.1107/S1600536809013695
PMCID: PMC2977754

2-(4-Methoxy­phenyl­sulfin­yl)cyclo­hexan-1-one

Abstract

The cyclo­hexa­none ring in the title compound, C13H16O3S, is in a distorted chair conformation. The intra­molecular S(...)Ocarbon­yl distance is 2.814 (2) Å. Mol­ecules are connected into a two-dimensional array via C—H(...)O contacts involving the carbonyl and sulfinyl O atoms.

Related literature

For related literature, see: Zukerman-Schpector, da Silva et al. (2006 [triangle]). For structure analysis, see: Cremer & Pople (1975 [triangle]); Iulek & Zukerman-Schpector (1997 [triangle]). For details of synthesis, see: Bradscher et al. (1954 [triangle]); Zukerman-Schpector, Maganhi et al. (2006 [triangle]); Drabowicz & Mikolajczyk (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1075-scheme1.jpg

Experimental

Crystal data

  • C13H16O3S
  • M r = 252.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1075-efi1.jpg
  • a = 11.0510 (4) Å
  • b = 10.0875 (2) Å
  • c = 11.3672 (5) Å
  • β = 93.886 (2)°
  • V = 1264.27 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 290 K
  • 0.15 × 0.10 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 8283 measured reflections
  • 2872 independent reflections
  • 2508 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.113
  • S = 1.06
  • 2872 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT and SADABS (Bruker, 2006 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), PARST (Nardelli, 1995 [triangle]) and MarvinSketch (ChemAxon, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013695/tk2419sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013695/tk2419Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank FAPESP (grant No. 2008/02531-5 to JZ-S), CNPq and CAPES for financial support. Professor R. A. Burrow of the Federal University of Santa Maria is gratefully acknowledged for helping with the collection of intensity data.

supplementary crystallographic information

Comment

The obtained product, which has stereogenic centres at S and C1, was a 3:1 mixture of the [C1(R)S(S)/C1(S)S(R)] and [C1(R)S(R)/C1(S)S(S)] diastereomeric sulfoxides, respectively, as determined from 1H NMR spectroscopy. From hexane/ethanol fractional crystallization, the pure [C1(R)S(S)/C1(S)S(R)] diastereomer, (I), was obtained. The cyclohexanone ring is in a distorted chair conformation as shown by the ring-puckering parameters (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997) q2 = 0.143 (2) Å, q3 = 0.499 (2) Å, Q = 0.519 (2) Å, [var phi]2 = -130.9 (8)°. The methyl moiety is slightly out of the phenyl plane as shown by the C13-O3-C10-C11 torsion angle of 4.9 (2)°. The molecules are linked via intermolecular C—H···O interactions involving the carbonyl- and sulfinyl-oxygen atoms into a 2-D array (Table 1).

Experimental

The starting 2-(4-methoxyphenylthio)cyclohexanone was prepared from the reaction of 2-chlorocyclohexanone and 4-methoxythiophenol as previously reported (Bradscher et al. 1954). The sulfoxide 2-[(4-methoxybenzene)sulfinyl]cyclohexanone was prepared by oxidation of 2-(4-methoxyphenylthio)cyclohexanone (Zukerman-Schpector, Maganhi et al. 2006; Drabowicz & Mikolajczyk, 1978). A CH3OH (10 ml) solution of SeO2 (1.23 g, 11.08 mmol) and hydrogen peroxide (30% H2O2 in aqueous solution; 1.25 ml, 11.08 mmol) was added drop-wise, at 273 K, to a solution of 2-(4-methoxyphenylthio)cyclohexanone (2.62 g, 11.08 mmol) in CH3OH (5 ml). The reaction mixture was stirred at 273 K for 2 h and then at room temperature for 2 h. After completion of the reaction, a saturated aqueous NaCl solution (30 ml) was added, the aqueous layer was extracted with CH2Cl2 (3 x 20 ml) and dried over anhydrous Na2SO4. After solvent evaporation under reduced pressure, 1.39 g (5.5 mmol, yield 50%; m.p. 363–365 K) of the crude 2-[(4-methoxybenzene)sulfinyl]cyclohexanone (I) was obtained. Colourless crystals of (I) were obtained by vapour diffusion from n-hexane/acetone at 298 K.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å, and with Uiso set to 1.2—1.5 times Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Crystal data

C13H16O3SF(000) = 536
Mr = 252.33Dx = 1.326 Mg m3
Monoclinic, P21/cMelting point = 363–364 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.0510 (4) ÅCell parameters from 5749 reflections
b = 10.0875 (2) Åθ = 1.0–27.5°
c = 11.3672 (5) ŵ = 0.25 mm1
β = 93.886 (2)°T = 290 K
V = 1264.27 (8) Å3Irregular, colourless
Z = 40.15 × 0.10 × 0.10 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2508 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
graphiteθmax = 27.5°, θmin = 2.7°
[var phi] and ω scansh = −10→14
8283 measured reflectionsk = −11→13
2872 independent reflectionsl = −12→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.055P)2 + 0.314P] where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.56721 (4)0.34807 (4)0.33452 (3)0.04990 (15)
O10.79251 (14)0.37910 (14)0.46227 (15)0.0817 (4)
O20.62133 (13)0.32131 (15)0.22034 (11)0.0697 (4)
O30.05306 (12)0.18455 (16)0.27603 (13)0.0739 (4)
C10.63097 (13)0.22233 (13)0.43728 (12)0.0417 (3)
H10.58370.22390.50720.050*
C20.75982 (15)0.26614 (16)0.47557 (14)0.0527 (4)
C30.84104 (17)0.16348 (19)0.5352 (2)0.0672 (5)
H3A0.82180.15600.61690.081*
H3B0.92450.19300.53430.081*
C40.82992 (16)0.02795 (18)0.47825 (18)0.0634 (5)
H4A0.86300.03070.40140.076*
H4B0.8762−0.03600.52650.076*
C50.69875 (16)−0.01463 (16)0.46473 (17)0.0592 (4)
H5A0.6662−0.01910.54180.071*
H5B0.6933−0.10240.42990.071*
C60.62411 (16)0.08211 (15)0.38717 (15)0.0546 (4)
H6A0.54020.05320.38050.066*
H6B0.65370.08230.30870.066*
C70.41425 (14)0.29147 (14)0.31844 (12)0.0458 (3)
C80.32744 (16)0.35031 (15)0.38466 (14)0.0536 (4)
H80.35020.41510.44000.064*
C90.20829 (17)0.31257 (19)0.36820 (16)0.0599 (4)
H90.15040.35210.41240.072*
C100.17349 (15)0.21533 (17)0.28560 (14)0.0547 (4)
C110.25949 (16)0.15680 (16)0.21873 (14)0.0521 (4)
H110.23680.09180.16360.063*
C120.37932 (15)0.19623 (15)0.23499 (13)0.0490 (3)
H120.43710.15850.18950.059*
C130.0152 (2)0.0786 (3)0.1988 (2)0.0827 (6)
H13A0.03600.09890.12020.124*
H13B−0.07110.06740.19950.124*
H13C0.0550−0.00180.22490.124*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0664 (3)0.0368 (2)0.0455 (2)−0.00370 (15)−0.00423 (17)0.00762 (14)
O10.0843 (9)0.0525 (7)0.1038 (11)−0.0195 (7)−0.0274 (8)0.0100 (7)
O20.0803 (9)0.0861 (9)0.0433 (6)−0.0128 (7)0.0071 (6)0.0172 (6)
O30.0567 (7)0.0870 (10)0.0771 (9)0.0022 (7)−0.0026 (6)0.0003 (7)
C10.0524 (8)0.0375 (7)0.0347 (6)0.0003 (6)−0.0003 (5)0.0025 (5)
C20.0593 (9)0.0462 (8)0.0517 (8)−0.0041 (7)−0.0037 (7)−0.0007 (7)
C30.0525 (9)0.0611 (11)0.0856 (13)−0.0019 (8)−0.0126 (9)0.0083 (9)
C40.0613 (10)0.0573 (10)0.0726 (11)0.0142 (8)0.0112 (8)0.0089 (9)
C50.0703 (11)0.0389 (8)0.0668 (10)0.0034 (7)−0.0073 (8)0.0049 (7)
C60.0688 (10)0.0370 (7)0.0560 (9)0.0013 (7)−0.0107 (7)0.0000 (7)
C70.0617 (9)0.0356 (7)0.0389 (7)0.0043 (6)−0.0052 (6)0.0052 (5)
C80.0712 (11)0.0419 (8)0.0465 (8)0.0104 (7)−0.0038 (7)−0.0032 (6)
C90.0674 (10)0.0588 (10)0.0535 (9)0.0166 (8)0.0038 (8)−0.0002 (8)
C100.0581 (9)0.0538 (9)0.0511 (8)0.0065 (7)−0.0050 (7)0.0094 (7)
C110.0645 (10)0.0448 (8)0.0455 (8)0.0035 (7)−0.0073 (7)−0.0008 (6)
C120.0622 (9)0.0426 (8)0.0415 (7)0.0066 (6)−0.0013 (6)−0.0006 (6)
C130.0746 (13)0.0998 (17)0.0715 (13)−0.0175 (12)−0.0124 (10)0.0023 (12)

Geometric parameters (Å, °)

S—O21.4900 (13)C5—H5A0.9700
S—C71.7819 (16)C5—H5B0.9700
S—C11.8325 (14)C6—H6A0.9700
O1—C21.208 (2)C6—H6B0.9700
O3—C101.364 (2)C7—C121.386 (2)
O3—C131.428 (3)C7—C81.392 (2)
C1—C61.525 (2)C8—C91.371 (3)
C1—C21.526 (2)C8—H80.9300
C1—H10.9800C9—C101.394 (2)
C2—C31.501 (2)C9—H90.9300
C3—C41.514 (3)C10—C111.388 (2)
C3—H3A0.9700C11—C121.383 (2)
C3—H3B0.9700C11—H110.9300
C4—C51.510 (3)C12—H120.9300
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C5—C61.520 (2)C13—H13C0.9600
O2—S—C7106.65 (7)C5—C6—C1111.56 (13)
O2—S—C1105.67 (7)C5—C6—H6A109.3
C7—S—C199.48 (6)C1—C6—H6A109.3
C10—O3—C13117.62 (16)C5—C6—H6B109.3
C6—C1—C2113.39 (13)C1—C6—H6B109.3
C6—C1—S113.37 (10)H6A—C6—H6B108.0
C2—C1—S107.00 (10)C12—C7—C8119.70 (15)
C6—C1—H1107.6C12—C7—S120.69 (12)
C2—C1—H1107.6C8—C7—S119.45 (12)
S—C1—H1107.6C9—C8—C7119.90 (15)
O1—C2—C3122.17 (16)C9—C8—H8120.0
O1—C2—C1121.24 (15)C7—C8—H8120.0
C3—C2—C1116.53 (14)C8—C9—C10120.38 (16)
C2—C3—C4113.65 (16)C8—C9—H9119.8
C2—C3—H3A108.8C10—C9—H9119.8
C4—C3—H3A108.8O3—C10—C11124.06 (16)
C2—C3—H3B108.8O3—C10—C9115.92 (16)
C4—C3—H3B108.8C11—C10—C9120.02 (16)
H3A—C3—H3B107.7C12—C11—C10119.29 (15)
C5—C4—C3110.49 (15)C12—C11—H11120.4
C5—C4—H4A109.6C10—C11—H11120.4
C3—C4—H4A109.6C11—C12—C7120.69 (15)
C5—C4—H4B109.6C11—C12—H12119.7
C3—C4—H4B109.6C7—C12—H12119.7
H4A—C4—H4B108.1O3—C13—H13A109.5
C4—C5—C6110.84 (14)O3—C13—H13B109.5
C4—C5—H5A109.5H13A—C13—H13B109.5
C6—C5—H5A109.5O3—C13—H13C109.5
C4—C5—H5B109.5H13A—C13—H13C109.5
C6—C5—H5B109.5H13B—C13—H13C109.5
H5A—C5—H5B108.1
O2—S—C1—C6−48.31 (13)C1—S—C7—C12−86.59 (13)
C7—S—C1—C662.09 (13)O2—S—C7—C8−152.43 (12)
O2—S—C1—C277.46 (11)C1—S—C7—C897.95 (13)
C7—S—C1—C2−172.14 (10)C12—C7—C8—C90.9 (2)
C6—C1—C2—O1143.42 (18)S—C7—C8—C9176.38 (12)
S—C1—C2—O117.7 (2)C7—C8—C9—C100.1 (2)
C6—C1—C2—C3−39.3 (2)C13—O3—C10—C114.9 (2)
S—C1—C2—C3−165.05 (14)C13—O3—C10—C9−175.42 (17)
O1—C2—C3—C4−140.82 (19)C8—C9—C10—O3179.84 (15)
C1—C2—C3—C441.9 (2)C8—C9—C10—C11−0.5 (2)
C2—C3—C4—C5−51.8 (2)O3—C10—C11—C12179.51 (15)
C3—C4—C5—C660.5 (2)C9—C10—C11—C12−0.1 (2)
C4—C5—C6—C1−58.4 (2)C10—C11—C12—C71.1 (2)
C2—C1—C6—C546.78 (19)C8—C7—C12—C11−1.5 (2)
S—C1—C6—C5169.06 (12)S—C7—C12—C11−176.95 (11)
O2—S—C7—C1223.03 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.473.257 (2)137
C3—H3A···O2i0.972.593.323 (2)133
C11—H11···O1ii0.932.593.500 (2)167

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2419).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bradscher, C. K., Brown, F. C. & Grantham, R. J. (1954). J. Am. Chem. Soc.76, 114–115.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • ChemAxon (2008). MarvinSketch. http://www.chemaxon.com.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Drabowicz, J. & Mikolajczyk, M. (1978). Synthesis, 10, 758–759.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zukerman-Schpector, J., da Silva, R. O., Olivato, P. R., Vinhato, E., Rodrigues, A. & Cerqueira, C. R. Jr (2006). Z. Kristallogr. New Cryst. Struct.221, 311–312.
  • Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. Jr (2006). Z. Kristallogr. New Cryst. Struct.221, 165–166.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography