PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1074.
Published online 2009 April 18. doi:  10.1107/S1600536809013713
PMCID: PMC2977753

5-(4-Bromo­phen­yl)-1,2,3,4-tetra­hydro­benzo[a]phenanthridine

Abstract

The title compound, C23H18BrN, was synthesized by the reaction of 4-bromo­benzaldehyde, naphthalen-2-amine and cyclo­hexa­none in tetra­hydro­furan, catalyzed by iodine. The saturated six-membered ring adopts a half-chair conformation, and the four vicinal rings form a helical conformation, which results in a significant deviation from planarity for the pyridine ring. In the crystal, a weak C—H(...)π inter­action occurs, leading to inversion dimers.

Related literature

For background on phenanthridine derivatives, see: Clement et al. (2005 [triangle]); Hazeldine et al. (2005 [triangle]); Kock et al. (2005 [triangle]); Lu et al. (2004 [triangle]); Vanquelef et al. (2004 [triangle]); Watanabe et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1074-scheme1.jpg

Experimental

Crystal data

  • C23H18BrN
  • M r = 388.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1074-efi1.jpg
  • a = 5.660 (3) Å
  • b = 11.596 (6) Å
  • c = 13.869 (6) Å
  • α = 78.48 (3)°
  • β = 78.30 (3)°
  • γ = 85.15 (3)°
  • V = 872.5 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.36 mm−1
  • T = 296 K
  • 0.46 × 0.22 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.365, T max = 0.593 (expected range = 0.432–0.702)
  • 11744 measured reflections
  • 3826 independent reflections
  • 2174 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.164
  • S = 1.14
  • 3826 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.94 e Å−3
  • Δρmin = −1.05 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013713/hb2942sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013713/hb2942Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Fund of Xuzhou Institute of Architectural Technology (project No. JYA308-19) for financial support.

supplementary crystallographic information

Comment

Phenanthridine derivatives are well known compounds as a consequence of their pharmacological profile as an antitumor reagent (Lu, et al. 2004, Hazeldine, et al. 2005, Watanabe, et al. 2003). They also have been reported possessing antiviral activity (Vanquelef, et al. 2004), antiproliferative activity (Kock, et al. 2005) and cytostatic activity (Clement, et al. 2005), We report here the crystal structure of the title compound, (I).

The six-numbered ring (C2/C3/C14—C17) adopts a half-chair conformation: the atoms C2, C3, C14, C16 and C17 are coplanar, while the atom C15 deviates from the plane by 0.731 (6) Å; The basal plane makes a dihedral angle of 9.6 (2) ° to the coplanar pyridine ring. The dihedral angle between the pyridine ring and benzene ring (C18—C21) is 67.3 (1) °. To our surprise, the naphthalene ring is slightly distorted; with the mean deviation of fitted atoms is 0.080 Å. The largest deviation is -0.121 (2) Å for C4. Perhaps the four vicinal rings form a screw structure, which affects the plane of naphthalene ring. If the naphthalene ring is treated as two vicinal benzene rings (benzene ring (C8—C13) and benzene ring (C4—C8/C13), they make a dihedral angle of 8.6 (2) ° each other. The latter (benzene ring (C4—C8/C13) makes a dihedral angle of 7.6 (2) Å to pyridine ring. The sum of the above dihedral angles (25.8 °) of four vicinal rings is statistically equal to the dihedral angle (25.5 (2) °) between the benzene ring (C8—C13) and the plane defined by the atoms (C2/C3/C14—C17). This result also conforms that the four rings in the benza[a]phenanthridine moiety form a screw structure.

C—H···π stacking is present in the crystal structure of (I) (Table 2), thereby forming inversion dimers (Figure 2).

Experimental

The title compound, (I), was prepared by the reaction of 4-bromobenzaldehyde (1 mmol, 0.185 g), naphthalen-2-amine (1 mmol, 0.143 g) and cyclohexanone (1 mmol, 0.098 g) in THF (10 ml) at 338 K catalyzed by iodine. m.p. 491–493 K. Colourless blocks of (I) were obtained by slow evaporation of an ethanol solution.

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure drawing for (I) showing 50% probability of displacement ellipsoids.
Fig. 2.
The molecular packing diagram showing the C—H···π stacking in the crystal of (I).

Crystal data

C23H18BrNZ = 2
Mr = 388.29F(000) = 396
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Melting point = 491–493 K
a = 5.660 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.596 (6) ÅCell parameters from 3260 reflections
c = 13.869 (6) Åθ = 2.6–26.1°
α = 78.48 (3)°µ = 2.36 mm1
β = 78.30 (3)°T = 296 K
γ = 85.15 (3)°Block, colourless
V = 872.5 (8) Å30.46 × 0.22 × 0.15 mm

Data collection

Bruker SMART CCD diffractometer3826 independent reflections
Radiation source: fine-focus sealed tube2174 reflections with I > 2σ(I)
graphiteRint = 0.041
ω scansθmax = 27.6°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→7
Tmin = 0.365, Tmax = 0.593k = −13→15
11744 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.082P)2 + 0.0233P] where P = (Fo2 + 2Fc2)/3
3826 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = −1.05 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.54047 (10)−0.03144 (4)0.75111 (3)0.0876 (3)
N10.2434 (6)0.4250 (3)0.39876 (17)0.0451 (7)
C10.4456 (7)0.3594 (3)0.3874 (2)0.0416 (8)
C20.6195 (7)0.3727 (3)0.2984 (2)0.0415 (8)
C30.5838 (6)0.4649 (3)0.2203 (2)0.0406 (8)
C40.3867 (6)0.5467 (3)0.23571 (19)0.0392 (8)
C50.2104 (6)0.5181 (3)0.32479 (19)0.0401 (8)
C6−0.0130 (7)0.5835 (3)0.3388 (2)0.0480 (9)
H6A−0.12730.56090.39670.058*
C7−0.0644 (7)0.6779 (3)0.2703 (2)0.0478 (9)
H7A−0.21650.71590.27880.057*
C80.1163 (7)0.7192 (3)0.1846 (2)0.0454 (9)
C90.0690 (8)0.8271 (3)0.1212 (2)0.0558 (10)
H9A−0.08240.86560.13170.067*
C100.2477 (8)0.8748 (3)0.0442 (3)0.0571 (11)
H10B0.21640.94460.00150.068*
C110.4733 (8)0.8188 (4)0.0305 (2)0.0582 (11)
H11B0.59520.8525−0.02030.070*
C120.5202 (7)0.7137 (3)0.0910 (2)0.0486 (9)
H12A0.67440.67820.08050.058*
C130.3405 (7)0.6580 (3)0.1688 (2)0.0420 (9)
C140.7466 (7)0.4650 (3)0.1191 (2)0.0507 (9)
H14C0.65660.49760.06660.061*
H14D0.88050.51490.11210.061*
C150.8432 (9)0.3429 (4)0.1069 (2)0.0651 (12)
H15C0.94450.34550.04110.078*
H15D0.71040.29280.11240.078*
C160.9891 (9)0.2926 (5)0.1872 (3)0.0720 (13)
H16C1.05590.21490.17810.086*
H16D1.12210.34270.18140.086*
C170.8312 (7)0.2847 (4)0.2897 (2)0.0514 (9)
H17A0.76990.20620.31050.062*
H17B0.93120.29420.33650.062*
C180.4726 (6)0.2632 (3)0.47485 (19)0.0424 (8)
C190.6498 (7)0.2655 (4)0.5296 (2)0.0536 (10)
H19A0.75550.32680.51140.064*
C200.6714 (8)0.1771 (4)0.6116 (2)0.0575 (11)
H20B0.79320.17750.64760.069*
C210.5097 (7)0.0887 (3)0.6387 (2)0.0491 (9)
C220.3329 (8)0.0850 (3)0.5860 (2)0.0546 (10)
H22A0.22600.02420.60480.066*
C230.3150 (7)0.1734 (3)0.5038 (2)0.0498 (10)
H23B0.19420.17180.46760.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1254 (6)0.0660 (4)0.0680 (3)−0.0038 (3)−0.0449 (3)0.0218 (2)
N10.048 (2)0.0464 (18)0.0367 (11)−0.0030 (16)−0.0065 (11)0.0014 (11)
C10.048 (2)0.0384 (19)0.0381 (13)−0.0051 (18)−0.0127 (13)−0.0011 (12)
C20.046 (2)0.0373 (18)0.0410 (13)−0.0039 (17)−0.0133 (14)−0.0019 (12)
C30.047 (2)0.0366 (19)0.0374 (12)−0.0069 (17)−0.0098 (13)−0.0003 (12)
C40.042 (2)0.0394 (19)0.0371 (12)−0.0066 (17)−0.0120 (13)−0.0022 (12)
C50.042 (2)0.0390 (19)0.0375 (13)−0.0016 (17)−0.0085 (13)−0.0034 (12)
C60.049 (3)0.048 (2)0.0432 (14)−0.0004 (19)−0.0041 (14)−0.0046 (14)
C70.044 (2)0.043 (2)0.0577 (17)0.0109 (18)−0.0132 (15)−0.0149 (15)
C80.051 (3)0.042 (2)0.0450 (14)−0.0058 (19)−0.0165 (15)−0.0041 (13)
C90.062 (3)0.046 (2)0.0621 (18)0.004 (2)−0.0264 (19)−0.0037 (16)
C100.067 (3)0.042 (2)0.0589 (18)0.000 (2)−0.0223 (19)0.0058 (16)
C110.071 (3)0.049 (2)0.0491 (16)−0.011 (2)−0.0124 (17)0.0093 (15)
C120.049 (2)0.046 (2)0.0462 (15)−0.0039 (18)−0.0072 (15)0.0003 (14)
C130.050 (2)0.0373 (19)0.0398 (13)−0.0059 (18)−0.0155 (14)−0.0015 (12)
C140.057 (3)0.052 (2)0.0376 (13)−0.0010 (19)−0.0037 (14)−0.0001 (13)
C150.079 (3)0.061 (3)0.0465 (16)0.005 (2)0.0033 (17)−0.0091 (16)
C160.067 (3)0.067 (3)0.067 (2)0.022 (3)−0.001 (2)0.000 (2)
C170.051 (3)0.050 (2)0.0490 (15)0.0011 (19)−0.0090 (15)−0.0016 (15)
C180.045 (2)0.043 (2)0.0351 (12)−0.0014 (17)−0.0053 (12)−0.0004 (12)
C190.053 (3)0.059 (2)0.0483 (15)−0.014 (2)−0.0154 (15)0.0024 (15)
C200.062 (3)0.067 (3)0.0447 (15)−0.006 (2)−0.0224 (16)−0.0004 (16)
C210.057 (2)0.044 (2)0.0434 (14)0.0040 (18)−0.0151 (15)0.0017 (14)
C220.062 (3)0.042 (2)0.0572 (16)−0.008 (2)−0.0179 (17)0.0056 (15)
C230.054 (3)0.046 (2)0.0487 (14)−0.0049 (19)−0.0195 (15)0.0033 (14)

Geometric parameters (Å, °)

Br1—C211.899 (3)C12—C131.416 (5)
N1—C11.320 (5)C12—H12A0.9300
N1—C51.362 (4)C14—C151.504 (6)
C1—C21.404 (5)C14—H14C0.9700
C1—C181.498 (4)C14—H14D0.9700
C2—C31.396 (4)C15—C161.515 (6)
C2—C171.508 (6)C15—H15C0.9700
C3—C41.413 (5)C15—H15D0.9700
C3—C141.514 (5)C16—C171.508 (5)
C4—C51.423 (4)C16—H16C0.9700
C4—C131.469 (4)C16—H16D0.9700
C5—C61.417 (5)C17—H17A0.9700
C6—C71.353 (5)C17—H17B0.9700
C6—H6A0.9300C18—C231.373 (5)
C7—C81.432 (5)C18—C191.380 (4)
C7—H7A0.9300C19—C201.389 (5)
C8—C131.400 (5)C19—H19A0.9300
C8—C91.418 (5)C20—C211.376 (5)
C9—C101.374 (6)C20—H20B0.9300
C9—H9A0.9300C21—C221.361 (5)
C10—C111.378 (6)C22—C231.387 (4)
C10—H10B0.9300C22—H22A0.9300
C11—C121.373 (5)C23—H23B0.9300
C11—H11B0.9300
C1—N1—C5118.9 (3)C15—C14—H14C109.3
N1—C1—C2123.4 (3)C3—C14—H14C109.3
N1—C1—C18115.2 (3)C15—C14—H14D109.3
C2—C1—C18121.3 (3)C3—C14—H14D109.3
C3—C2—C1118.2 (4)H14C—C14—H14D108.0
C3—C2—C17122.8 (3)C14—C15—C16109.5 (3)
C1—C2—C17119.0 (3)C14—C15—H15C109.8
C2—C3—C4119.4 (3)C16—C15—H15C109.8
C2—C3—C14117.4 (3)C14—C15—H15D109.8
C4—C3—C14122.9 (3)C16—C15—H15D109.8
C3—C4—C5117.0 (3)H15C—C15—H15D108.2
C3—C4—C13127.2 (3)C17—C16—C15110.2 (4)
C5—C4—C13115.9 (3)C17—C16—H16C109.6
N1—C5—C6116.8 (3)C15—C16—H16C109.6
N1—C5—C4122.1 (3)C17—C16—H16D109.6
C6—C5—C4121.1 (3)C15—C16—H16D109.6
C7—C6—C5121.7 (3)H16C—C16—H16D108.1
C7—C6—H6A119.2C2—C17—C16116.1 (3)
C5—C6—H6A119.2C2—C17—H17A108.3
C6—C7—C8119.8 (4)C16—C17—H17A108.3
C6—C7—H7A120.1C2—C17—H17B108.3
C8—C7—H7A120.1C16—C17—H17B108.3
C13—C8—C9121.3 (3)H17A—C17—H17B107.4
C13—C8—C7120.1 (3)C23—C18—C19119.0 (3)
C9—C8—C7118.5 (4)C23—C18—C1120.2 (3)
C10—C9—C8119.7 (4)C19—C18—C1120.8 (3)
C10—C9—H9A120.1C18—C19—C20120.5 (3)
C8—C9—H9A120.1C18—C19—H19A119.8
C9—C10—C11119.8 (3)C20—C19—H19A119.8
C9—C10—H10B120.1C21—C20—C19118.9 (3)
C11—C10—H10B120.1C21—C20—H20B120.6
C12—C11—C10120.8 (4)C19—C20—H20B120.6
C12—C11—H11B119.6C22—C21—C20121.6 (3)
C10—C11—H11B119.6C22—C21—Br1119.9 (3)
C11—C12—C13121.9 (4)C20—C21—Br1118.5 (2)
C11—C12—H12A119.1C21—C22—C23118.8 (3)
C13—C12—H12A119.1C21—C22—H22A120.6
C8—C13—C12116.3 (3)C23—C22—H22A120.6
C8—C13—C4120.5 (3)C18—C23—C22121.2 (3)
C12—C13—C4123.0 (3)C18—C23—H23B119.4
C15—C14—C3111.6 (3)C22—C23—H23B119.4
C5—N1—C1—C2−6.8 (4)C7—C8—C13—C12−171.1 (3)
C5—N1—C1—C18176.7 (3)C9—C8—C13—C4179.6 (3)
N1—C1—C2—C34.2 (5)C7—C8—C13—C44.4 (4)
C18—C1—C2—C3−179.5 (3)C11—C12—C13—C8−3.6 (5)
N1—C1—C2—C17−173.5 (3)C11—C12—C13—C4−178.9 (3)
C18—C1—C2—C172.8 (4)C3—C4—C13—C8167.9 (3)
C1—C2—C3—C45.1 (4)C5—C4—C13—C8−10.9 (4)
C17—C2—C3—C4−177.3 (3)C3—C4—C13—C12−16.9 (5)
C1—C2—C3—C14−169.1 (3)C5—C4—C13—C12164.3 (3)
C17—C2—C3—C148.5 (5)C2—C3—C14—C1525.2 (4)
C2—C3—C4—C5−11.0 (4)C4—C3—C14—C15−148.8 (3)
C14—C3—C4—C5162.9 (3)C3—C14—C15—C16−60.4 (5)
C2—C3—C4—C13170.1 (3)C14—C15—C16—C1761.1 (5)
C14—C3—C4—C13−16.0 (5)C3—C2—C17—C16−6.9 (5)
C1—N1—C5—C6177.9 (3)C1—C2—C17—C16170.7 (3)
C1—N1—C5—C40.1 (4)C15—C16—C17—C2−27.8 (6)
C3—C4—C5—N18.7 (4)N1—C1—C18—C2363.7 (4)
C13—C4—C5—N1−172.3 (3)C2—C1—C18—C23−113.0 (4)
C3—C4—C5—C6−169.0 (3)N1—C1—C18—C19−114.0 (4)
C13—C4—C5—C610.0 (4)C2—C1—C18—C1969.3 (5)
N1—C5—C6—C7179.7 (3)C23—C18—C19—C201.2 (6)
C4—C5—C6—C7−2.5 (5)C1—C18—C19—C20179.0 (3)
C5—C6—C7—C8−4.7 (5)C18—C19—C20—C21−1.5 (6)
C6—C7—C8—C133.6 (5)C19—C20—C21—C221.3 (6)
C6—C7—C8—C9−171.7 (3)C19—C20—C21—Br1−179.8 (3)
C13—C8—C9—C10−1.6 (5)C20—C21—C22—C23−0.7 (6)
C7—C8—C9—C10173.6 (3)Br1—C21—C22—C23−179.6 (3)
C8—C9—C10—C11−1.5 (5)C19—C18—C23—C22−0.7 (6)
C9—C10—C11—C122.0 (6)C1—C18—C23—C22−178.4 (3)
C10—C11—C12—C130.6 (5)C21—C22—C23—C180.4 (6)
C9—C8—C13—C124.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···Cgi0.932.883.620 (14)137

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2942).

References

  • Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clement, B., Weide, M., Wolschendorf, U. & Kock, I. (2005). Angew. Chem. Int. Ed.44, 635–638. [PubMed]
  • Hazeldine, S. T., Polin, L., Kushner, J., White, K., Corbett, T. H., Biehl, J. & Horwitz, J. P. (2005). Bioorg. Med. Chem 13, 1069–1081. [PubMed]
  • Kock, I., Heber, D., Weide, M., Wolschendorf, U. & Clement, B. (2005). J. Med. Chem.48, 2772–2777. [PubMed]
  • Lu, T., Guo, C. & Ni, P. (2004). Zhongguo Yaoke Daxue Xuebao, 35, 99–105.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vanquelef, E., Amoros, M., Boustie, J., Lynch, M. A., Waigh, R. D. & Duval, O. (2004). J. Enzyme Inhib. Med. Chem.19, 481–487. [PubMed]
  • Watanabe, T., Ohashi, Y., Yoshino, R., Komano, N., Eguchi, M., Maruyama, S. & Ishikawa, T. (2003). Org. Biomol. Chem.1, 3024–3032. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography