PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1068.
Published online 2009 April 18. doi:  10.1107/S1600536809013543
PMCID: PMC2977748

Dipyridinium 2,2′-dithio­dinicotinate

Abstract

The dianion of the title salt, 2C5H6N+·C12H6N2O4S2 2−, lies on a special position of 2 site symmetry that relates one thio­nicotinate part to the other, and the dihedral angle between the niotinate planes is 89.2 (2)°. The pyridinium cations are hydrogen bonded to the carboxyl­ate group by way of N—H(...)O links.

Related literature

The structure is a non-merohedral twin; for the program to model twinned crystal structures, see: Spek (2003 [triangle]). For 1,1′-dithio-2,2′-dinicotinic acid, see: Zhu et al. (2002 [triangle]). For the methyl, ethyl and n-butyl esters, see: Cindrić et al. (2001 [triangle]); Toma et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1068-scheme1.jpg

Experimental

Crystal data

  • 2C5H6N+·C12H6N2O4S2 2−
  • M r = 466.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1068-efi1.jpg
  • a = 7.9621 (3) Å
  • b = 12.3354 (4) Å
  • c = 21.5057 (8) Å
  • β = 95.917 (2)°
  • V = 2100.9 (1) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 123 K
  • 0.28 × 0.16 × 0.08 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.923, T max = 0.977
  • 6726 measured reflections
  • 1855 independent reflections
  • 1496 reflections with I > 2σ(I)
  • R int = 0.101

Refinement

  • R[F 2 > 2σ(F 2)] = 0.092
  • wR(F 2) = 0.269
  • S = 1.59
  • 1855 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013543/si2170sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013543/si2170Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

The title compound was isolated as one of the by-products when 2-(3,5-di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinic acid (0.37 g, 1 mmol) and thiocarbohydrazide (0.10 g, 1 mmol) were reacted in pyridine (10 ml) for 3 h. The product from a cool mixture was collected and recrystallized from pyridine

Refinement

The specimen used in the diffraction measurements is a multiply-twinned crystal; twinning was evident when examined by the RLATT routine of the data collection software, with a major of about 60%. The diffraction images were integrated on the major component.

The structure initially refined to an R> index of 13%. The structure is a non-merohedral twin, as suggested by PLATON (Spek, 2003). The intensities were de-twinned by the TwinRotMat routine.

The carbon- and nitrogen-bound H-atoms were placed in calculated positions (C—H 0.95 Å, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times U(C,N).

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of 2(C5H6N) (C12H6N2O4S2) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

2C5H6N+·C12H6N2O4S22F(000) = 968
Mr = 466.52Dx = 1.475 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1585 reflections
a = 7.9621 (3) Åθ = 3.1–24.0°
b = 12.3354 (4) ŵ = 0.29 mm1
c = 21.5057 (8) ÅT = 123 K
β = 95.917 (2)°Chip, light yellow
V = 2100.9 (1) Å30.28 × 0.16 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer1855 independent reflections
Radiation source: fine-focus sealed tube1496 reflections with I > 2σ(I)
graphiteRint = 0.101
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.923, Tmax = 0.977k = −14→14
6726 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.269H-atom parameters constrained
S = 1.59w = 1/[σ2(Fo2) + (0.1P)2 + 5P] where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.57 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.5434 (2)0.61088 (12)0.29627 (7)0.0213 (5)
O10.6450 (6)0.6042 (4)0.4204 (2)0.0317 (12)
O20.5265 (6)0.6888 (4)0.4968 (2)0.0336 (12)
N10.3073 (7)0.7643 (4)0.2874 (2)0.0249 (12)
N20.7396 (7)0.5816 (4)0.5721 (3)0.0278 (13)
H20.66900.62180.54780.033*
C10.2040 (9)0.8378 (5)0.3103 (3)0.0299 (16)
H10.13000.87780.28140.036*
C20.1994 (8)0.8583 (5)0.3731 (3)0.0271 (15)
H2A0.12400.91020.38730.033*
C30.3092 (8)0.8001 (5)0.4142 (3)0.0249 (14)
H30.30910.81160.45790.030*
C40.4190 (8)0.7255 (5)0.3929 (3)0.0204 (13)
C50.4125 (8)0.7097 (5)0.3280 (3)0.0191 (13)
C60.5418 (8)0.6678 (5)0.4383 (3)0.0227 (14)
C70.7634 (9)0.5987 (6)0.6336 (3)0.0311 (16)
H70.70300.65570.65100.037*
C80.8721 (9)0.5368 (6)0.6728 (3)0.0342 (17)
H80.88620.55120.71640.041*
C90.9605 (9)0.4535 (6)0.6481 (3)0.0325 (16)
H91.03350.40810.67440.039*
C100.9398 (10)0.4379 (6)0.5841 (3)0.0329 (16)
H101.00300.38420.56510.039*
C110.8259 (9)0.5018 (5)0.5485 (3)0.0280 (15)
H110.80780.48830.50490.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0232 (9)0.0189 (8)0.0212 (8)0.0044 (6)−0.0002 (6)0.0000 (6)
O10.035 (3)0.036 (3)0.023 (2)0.016 (2)−0.003 (2)−0.0003 (19)
O20.038 (3)0.040 (3)0.022 (2)0.017 (2)−0.002 (2)0.000 (2)
N10.023 (3)0.021 (3)0.029 (3)0.010 (2)−0.003 (2)0.000 (2)
N20.025 (3)0.029 (3)0.029 (3)0.001 (2)−0.003 (2)0.000 (2)
C10.029 (4)0.020 (3)0.039 (4)0.004 (3)−0.003 (3)0.001 (3)
C20.023 (3)0.018 (3)0.040 (4)0.000 (3)0.004 (3)−0.003 (3)
C30.027 (3)0.023 (3)0.027 (3)0.004 (3)0.009 (3)−0.001 (3)
C40.019 (3)0.016 (3)0.025 (3)−0.003 (2)−0.003 (3)0.002 (2)
C50.020 (3)0.018 (3)0.019 (3)0.000 (2)0.003 (2)0.003 (2)
C60.024 (3)0.017 (3)0.026 (3)−0.001 (3)−0.001 (3)−0.001 (2)
C70.027 (4)0.037 (4)0.028 (4)−0.002 (3)−0.003 (3)−0.006 (3)
C80.024 (4)0.053 (5)0.024 (3)0.001 (3)−0.005 (3)−0.001 (3)
C90.021 (3)0.037 (4)0.038 (4)−0.003 (3)−0.005 (3)0.004 (3)
C100.034 (4)0.025 (3)0.039 (4)0.002 (3)−0.002 (3)−0.001 (3)
C110.028 (4)0.029 (3)0.027 (3)0.002 (3)0.002 (3)−0.002 (3)

Geometric parameters (Å, °)

S1—C51.785 (6)C3—C41.380 (9)
S1—S1i2.038 (3)C3—H30.9500
O1—C61.226 (8)C4—C51.405 (9)
O2—C61.302 (8)C4—C61.490 (8)
N1—C51.329 (8)C7—C81.375 (10)
N1—C11.350 (8)C7—H70.9500
N2—C111.330 (9)C8—C91.383 (10)
N2—C71.333 (8)C8—H80.9500
N2—H20.8800C9—C101.384 (10)
C1—C21.376 (9)C9—H90.9500
C1—H10.9500C10—C111.372 (10)
C2—C31.380 (9)C10—H100.9500
C2—H2A0.9500C11—H110.9500
C5—S1—S1i102.7 (2)C4—C5—S1120.8 (5)
C5—N1—C1117.8 (6)O1—C6—O2124.2 (6)
C11—N2—C7117.9 (6)O1—C6—C4121.1 (6)
C11—N2—H2121.0O2—C6—C4114.7 (5)
C7—N2—H2121.0N2—C7—C8122.4 (7)
N1—C1—C2124.0 (6)N2—C7—H7118.8
N1—C1—H1118.0C8—C7—H7118.8
C2—C1—H1118.0C7—C8—C9119.4 (7)
C1—C2—C3117.0 (6)C7—C8—H8120.3
C1—C2—H2A121.5C9—C8—H8120.3
C3—C2—H2A121.5C8—C9—C10118.2 (6)
C4—C3—C2121.0 (6)C8—C9—H9120.9
C4—C3—H3119.5C10—C9—H9120.9
C2—C3—H3119.5C11—C10—C9118.6 (7)
C3—C4—C5117.6 (6)C11—C10—H10120.7
C3—C4—C6119.8 (6)C9—C10—H10120.7
C5—C4—C6122.6 (6)N2—C11—C10123.4 (6)
N1—C5—C4122.5 (6)N2—C11—H11118.3
N1—C5—S1116.7 (5)C10—C11—H11118.3
C5—N1—C1—C2−1.0 (10)S1i—S1—C5—C4172.6 (5)
N1—C1—C2—C30.6 (10)C3—C4—C6—O1−177.2 (6)
C1—C2—C3—C40.5 (9)C5—C4—C6—O10.9 (9)
C2—C3—C4—C5−1.2 (9)C3—C4—C6—O24.3 (8)
C2—C3—C4—C6177.1 (6)C5—C4—C6—O2−177.5 (6)
C1—N1—C5—C40.2 (9)C11—N2—C7—C8−0.4 (10)
C1—N1—C5—S1178.5 (5)N2—C7—C8—C9−0.1 (11)
C3—C4—C5—N10.9 (9)C7—C8—C9—C102.1 (11)
C6—C4—C5—N1−177.3 (5)C8—C9—C10—C11−3.5 (10)
C3—C4—C5—S1−177.4 (5)C7—N2—C11—C10−1.2 (10)
C6—C4—C5—S14.4 (8)C9—C10—C11—N23.2 (11)
S1i—S1—C5—N1−5.7 (5)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O20.881.712.586 (7)174

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2170).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cindrić, M., Strukan, N., Kaifež, T., Giester, G. & Kamenar, B. (2001). Z. Anorg. Allg. Chem.627, 2604–2608.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Toma, M., Sanchez, A., Castellano, E. E. & Ellena, J. (2004). Rev. Chim. (Bucharest), 55, 719–723.
  • Westrip, S. P. (2009). publCIF In preparation.
  • Zhu, J.-X., Zhao, Y.-J., Hong, M.-C., Sun, D.-F., Shi, Q. & Cao, R. (2002). Chem. Lett. pp. 484–485.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography