PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1066.
Published online 2009 April 18. doi:  10.1107/S1600536809013956
PMCID: PMC2977746

3-[4-(Dimethyl­amino)phenyl]-1-(3-pyridyl)prop-2-en-1-one

Abstract

The pyridyl and aryl rings in the title compound, C16H16N2O, which are located at the ends of the propenone unit, are inclined at an angle of 17.1 (1)° with respect to each other.

Related literature

For 3-(4-chloro­phenyl)-1-(3-pyridyl)prop-2-en-1-one, which crystallizes in a non-centrosymmetric space group, see: Uchida et al. (1998 [triangle]). For the general synthesis by the Claisen–Schmidt condensation, see: Vogel (1999 [triangle]). For literature on related compounds exhibiting second-harmonic generation activity, see: Gu et al. (2008 [triangle]); Ravindra et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1066-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O
  • M r = 252.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1066-efi1.jpg
  • a = 14.6672 (6) Å
  • b = 11.0644 (4) Å
  • c = 16.7272 (6) Å
  • β = 107.205 (3)°
  • V = 2593.1 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.20 × 0.20 × 0.03 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: none
  • 11747 measured reflections
  • 2976 independent reflections
  • 1817 reflections with I > 2˘I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.147
  • S = 1.02
  • 2976 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013956/bt2931sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013956/bt2931Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Mangalore Institute of Technology and Engineering and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Some chalcone derivatives exhibit high second-harmonic generation conversion efficiency (Gu et al., 2008; Ravindra et al., 2008a,b). The title compound was synthesized for the purpose of examining this property; unfortunately, the compound crystallizes in a centrosymmetric space group.

Experimental

The compound was synthesized by the Claisen–Schmidt condensation (Vogel, 1999). To a mixture of ethanol (20 ml) and 10% sodium hydroxide solution (5 ml) was added an ethanol (15 ml) solution of 3-acetyl pyridine (0.001 mol) and 4-dimethylaminobenzaldehyde (0.001 mol). The temperature of the mixture was maintained at below 298 K for 2 h. The solid product that formed was washed with water. The compound was recrystallized from methanol.

Refinement

H atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) restrained to 1.2–1.5Ueq(C).

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of C16H16N2O at the 70% probability level. H atoms are drawn as spheres of arbitrary radius.

Crystal data

C16H16N2OF(000) = 1072
Mr = 252.31Dx = 1.293 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1330 reflections
a = 14.6672 (6) Åθ = 2.5–24.9°
b = 11.0644 (4) ŵ = 0.08 mm1
c = 16.7272 (6) ÅT = 100 K
β = 107.205 (3)°Plate, orange
V = 2593.1 (2) Å30.20 × 0.20 × 0.03 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer1817 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
graphiteθmax = 27.5°, θmin = 2.4°
ω scansh = −19→18
11747 measured reflectionsk = −14→14
2976 independent reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0648P)2 + 0.8849P] where P = (Fo2 + 2Fc2)/3
2976 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.28 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.70214 (10)0.23165 (12)0.74962 (8)0.0328 (4)
N10.60015 (14)0.57819 (16)0.86721 (11)0.0408 (5)
N20.89331 (12)0.58854 (14)0.38128 (10)0.0270 (4)
C10.55057 (16)0.5062 (2)0.90340 (14)0.0394 (6)
H10.51850.54230.93900.047*
C20.54329 (15)0.3828 (2)0.89203 (13)0.0314 (5)
H20.50730.33540.91920.038*
C30.58905 (14)0.33046 (18)0.84076 (12)0.0273 (5)
H30.58550.24550.83220.033*
C40.64088 (13)0.40126 (16)0.80103 (11)0.0242 (4)
C50.64452 (15)0.52517 (17)0.81678 (12)0.0292 (5)
H50.68020.57460.79050.035*
C60.69040 (13)0.34254 (16)0.74515 (12)0.0240 (4)
C70.72162 (14)0.41654 (17)0.68607 (12)0.0268 (5)
H70.71080.50130.68460.032*
C80.76531 (13)0.36800 (17)0.63362 (11)0.0250 (4)
H80.77500.28310.63800.030*
C90.79945 (13)0.42798 (16)0.57141 (11)0.0226 (4)
C100.83957 (14)0.35986 (17)0.51975 (12)0.0259 (5)
H100.84510.27480.52770.031*
C110.87122 (14)0.41098 (16)0.45818 (12)0.0254 (4)
H110.89730.36100.42430.030*
C120.86545 (13)0.53701 (16)0.44457 (11)0.0225 (4)
C130.82739 (14)0.60643 (17)0.49786 (12)0.0258 (5)
H130.82400.69180.49160.031*
C140.79515 (14)0.55355 (17)0.55848 (12)0.0258 (4)
H140.76920.60320.59270.031*
C150.93708 (15)0.51553 (18)0.33043 (13)0.0316 (5)
H15A0.89720.44450.30970.047*
H15B1.00060.48940.36440.047*
H15C0.94290.56350.28290.047*
C160.91164 (16)0.71857 (17)0.38199 (13)0.0332 (5)
H16A0.85210.76270.37610.050*
H16B0.93640.73920.33530.050*
H16C0.95870.74090.43500.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0461 (9)0.0199 (7)0.0374 (8)−0.0033 (6)0.0201 (7)−0.0016 (6)
N10.0568 (13)0.0308 (10)0.0438 (11)0.0060 (9)0.0286 (10)0.0004 (8)
N20.0349 (10)0.0210 (8)0.0292 (9)0.0003 (7)0.0159 (8)0.0011 (7)
C10.0485 (15)0.0406 (13)0.0372 (13)0.0114 (11)0.0252 (12)0.0032 (10)
C20.0320 (12)0.0370 (12)0.0291 (11)−0.0004 (9)0.0152 (9)0.0073 (9)
C30.0316 (11)0.0232 (10)0.0268 (11)−0.0005 (9)0.0083 (9)0.0011 (8)
C40.0254 (10)0.0241 (10)0.0228 (10)0.0011 (8)0.0069 (8)0.0009 (8)
C50.0373 (12)0.0242 (10)0.0307 (11)0.0013 (9)0.0170 (10)0.0012 (8)
C60.0268 (11)0.0210 (10)0.0245 (10)−0.0036 (8)0.0079 (9)−0.0016 (8)
C70.0311 (11)0.0207 (10)0.0295 (11)0.0012 (8)0.0105 (9)0.0016 (8)
C80.0302 (11)0.0196 (9)0.0262 (10)−0.0024 (8)0.0099 (9)−0.0016 (8)
C90.0231 (10)0.0207 (9)0.0248 (10)−0.0010 (8)0.0084 (8)−0.0013 (8)
C100.0318 (11)0.0179 (9)0.0289 (11)−0.0004 (8)0.0106 (9)−0.0005 (8)
C110.0292 (11)0.0211 (10)0.0281 (10)0.0001 (8)0.0119 (9)−0.0046 (8)
C120.0216 (10)0.0226 (10)0.0231 (10)−0.0014 (8)0.0065 (8)−0.0003 (8)
C130.0315 (11)0.0163 (9)0.0311 (11)0.0000 (8)0.0115 (9)−0.0004 (8)
C140.0285 (11)0.0216 (9)0.0302 (11)0.0024 (8)0.0130 (9)−0.0023 (8)
C150.0349 (12)0.0307 (11)0.0335 (11)−0.0019 (9)0.0164 (10)0.0003 (9)
C160.0405 (13)0.0233 (10)0.0394 (12)−0.0023 (9)0.0174 (10)0.0045 (9)

Geometric parameters (Å, °)

O1—C61.238 (2)C8—C91.443 (2)
N1—C11.338 (3)C8—H80.9500
N1—C51.343 (2)C9—C101.401 (2)
N2—C121.367 (2)C9—C141.405 (3)
N2—C151.453 (2)C10—C111.371 (3)
N2—C161.463 (2)C10—H100.9500
C1—C21.378 (3)C11—C121.411 (2)
C1—H10.9500C11—H110.9500
C2—C31.365 (3)C12—C131.411 (3)
C2—H20.9500C13—C141.370 (3)
C3—C41.390 (3)C13—H130.9500
C3—H30.9500C14—H140.9500
C4—C51.394 (3)C15—H15A0.9800
C4—C61.492 (2)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C6—C71.458 (3)C16—H16A0.9800
C7—C81.342 (2)C16—H16B0.9800
C7—H70.9500C16—H16C0.9800
C1—N1—C5116.96 (18)C10—C9—C8119.74 (17)
C12—N2—C15120.43 (15)C14—C9—C8123.82 (17)
C12—N2—C16120.01 (16)C11—C10—C9122.61 (17)
C15—N2—C16116.07 (16)C11—C10—H10118.7
N1—C1—C2123.9 (2)C9—C10—H10118.7
N1—C1—H1118.1C10—C11—C12120.76 (18)
C2—C1—H1118.1C10—C11—H11119.6
C3—C2—C1118.4 (2)C12—C11—H11119.6
C3—C2—H2120.8N2—C12—C13121.80 (16)
C1—C2—H2120.8N2—C12—C11121.30 (17)
C2—C3—C4120.10 (18)C13—C12—C11116.87 (17)
C2—C3—H3120.0C14—C13—C12121.51 (17)
C4—C3—H3120.0C14—C13—H13119.2
C3—C4—C5117.36 (18)C12—C13—H13119.2
C3—C4—C6119.39 (17)C13—C14—C9121.77 (18)
C5—C4—C6123.24 (17)C13—C14—H14119.1
N1—C5—C4123.34 (19)C9—C14—H14119.1
N1—C5—H5118.3N2—C15—H15A109.5
C4—C5—H5118.3N2—C15—H15B109.5
O1—C6—C7122.12 (17)H15A—C15—H15B109.5
O1—C6—C4118.59 (17)N2—C15—H15C109.5
C7—C6—C4119.28 (16)H15A—C15—H15C109.5
C8—C7—C6121.66 (17)H15B—C15—H15C109.5
C8—C7—H7119.2N2—C16—H16A109.5
C6—C7—H7119.2N2—C16—H16B109.5
C7—C8—C9128.46 (18)H16A—C16—H16B109.5
C7—C8—H8115.8N2—C16—H16C109.5
C9—C8—H8115.8H16A—C16—H16C109.5
C10—C9—C14116.44 (17)H16B—C16—H16C109.5
C5—N1—C1—C20.3 (3)C7—C8—C9—C142.9 (3)
N1—C1—C2—C3−0.1 (3)C14—C9—C10—C11−1.5 (3)
C1—C2—C3—C4−0.4 (3)C8—C9—C10—C11178.42 (18)
C2—C3—C4—C50.8 (3)C9—C10—C11—C120.6 (3)
C2—C3—C4—C6−179.95 (18)C15—N2—C12—C13176.60 (17)
C1—N1—C5—C40.1 (3)C16—N2—C12—C1318.5 (3)
C3—C4—C5—N1−0.6 (3)C15—N2—C12—C11−5.1 (3)
C6—C4—C5—N1−179.85 (19)C16—N2—C12—C11−163.19 (18)
C3—C4—C6—O1−15.8 (3)C10—C11—C12—N2−177.40 (18)
C5—C4—C6—O1163.44 (19)C10—C11—C12—C131.0 (3)
C3—C4—C6—C7162.98 (18)N2—C12—C13—C14176.66 (18)
C5—C4—C6—C7−17.8 (3)C11—C12—C13—C14−1.7 (3)
O1—C6—C7—C8−0.4 (3)C12—C13—C14—C90.8 (3)
C4—C6—C7—C8−179.08 (18)C10—C9—C14—C130.8 (3)
C6—C7—C8—C9179.34 (18)C8—C9—C14—C13−179.16 (18)
C7—C8—C9—C10−177.03 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2931).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys.103, 103511–103516.
  • Ravindra, H. J., Kiran, A. J., Satheesh, R. N., Dharmaprakash, S. M., Chandrasekharan, K., Balakrishna, K. & Rotermund, F. (2008a). J. Cryst. Growth, 310, 2543–2549.
  • Ravindra, H. J., Kiran, A. J., Satheesh, R. N., Dharmaprakash, S. M., Chandrasekharan, K., Balakrishna, K. & Rotermund, F. (2008b). J. Cryst. Growth, 310, 4169–4176.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst.315, 135–140.
  • Vogel, A. I. (1999). Vogel’s Textbook of Practical Organic Chemistry, 5th ed., p. 1033. London: Longman.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography