PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1063.
Published online 2009 April 18. doi:  10.1107/S1600536809013634
PMCID: PMC2977743

2-(4-Methyl­phen­yl)-1H-anthraceno[1,2-d]imidazole-6,11-dione: a fluorescent chemosensor

Abstract

In the title compound, C22H14N2O2, the five rings of the mol­ecule are not coplanar. There is a significant twist between the four fused rings, which have a slightly arched conformation, and the pendant aromatic ring, as seen in the dihedral angle of 13.16 (8)° between the anthraquinonic ring system and the pendant aromatic ring plane.

Related literature

For general background on organic fluoro­phores, see: Czarnik (1994 [triangle]); Friend et al. (1999 [triangle]); Joux & Lebaron (2000 [triangle]); Kasten (1999 [triangle]); Soukos et al. (2000 [triangle]); Zhu et al. (2008 [triangle]). For related structures and applications, see: Peng et al. (2005 [triangle]); Boiocchi et al. (2004 [triangle]); Yoshida et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1063-scheme1.jpg

Experimental

Crystal data

  • C22H14N2O2
  • M r = 338.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1063-efi1.jpg
  • a = 7.3850 (10) Å
  • b = 14.0730 (4) Å
  • c = 30.5630 (9) Å
  • V = 3176.4 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 K
  • 0.14 × 0.14 × 0.07 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 20847 measured reflections
  • 3643 independent reflections
  • 2282 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.155
  • S = 1.05
  • 3643 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013634/tk2418sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013634/tk2418Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work has received partial support from CNPq, FAPERJ, CAPES, FAPEAL, IM–INOFAR, USP and FINEP.

supplementary crystallographic information

Comment

Recently, much attention has been devoted to the study of organic fluorophores because of their potential use in analytical chemistry (Czarnik, 1994), optoeletronics (Friend et al., 1999), dye technologies (Joux & Lebaron, 1988; Kasten, 1999), forensic chemistry (Soukos et al., 2000), and in pharmaceutical analysis evaluations (Zhu et al., 2008). In addition, specific and sensitive chemosensors for anions are of great importance in environmental science (Peng et al., 2005). The N—H···F interaction is already well known (Boiocchi et al., 2004) and can be exploited in the development of new molecules to function as fluorescent probes for fluoride. For instance, one such class of probe are the anthraimidazolic-derived quinones that can be deprotonated in the presence of anions to enhance their natural fluorescence by a supposed mechanism of photo-induced electron transfer (PET) or via a bathochromic shift of the absorption bands promoted by charge transfer (CT) (Peng et al., 2005). Although many photophysical properties of fluorophores are well known in solution, only a few are known in solid-state (Yoshida et al., 2002). In this paper we report the molecular structure of the 2-p-tolyl-1H-anthra[1,2-d]imidazole-6,11-dione, (I), a fluorescent probe synthesized in our laboratory.

In (I), the rings are not co-planar (Fig. 1). The anthraquinonic ring is almost planar with the greatest deviation from the least-squares plane of 0.102 (2) Å being exhibited by atom C7. The dihedral angle between the anthraquinonic ring [C2—C11] and the benzene ring [C12—C17] planes is 13.16 (8)°.

Experimental

To an acetic acid solution (25 ml) of the 1,2-diaminoanthraquinone (238 mg, 1 mmol), p-methyl-benzaldehyde (132 mg, 1.1 mmol) and sodium acetate (107 mg, 1.3 mmol) were added. The mixture was left under agitation and reflux for 30 min. The reaction was leaked into cold water (50 ml) which precipitated a yellow solid that was filtered under vacuum. The new anthraimidazole derivate (I) was purified by column chromatography over silica-gel, using a dichloromethane/ethyl acetate (5:1) mixture as eluent and obtained as yellow crystals in 69.5% yield (235 mg, 0.70 mmol); m.p. 522 K. 1H NMR (300 MHz, CDCl3) δ: 8.33–8.30 (m, 1H); 8.27–8.24 (m, 1H); 8.20 (d, J = 8.79 Hz, 1H); 8.08 (d, J = 7.91 Hz, 2H); 8.03 (d, J = 8.79 Hz, 1H); 7.83–7.75 (m, 2H); 7.37 (d, J = 7.91 Hz, 2H); 2.46 p.p.m. (s, 3H); N—H not obs. 13C NMR (300 MHz, CDCl3): δ: 21.8, 117.82, 121.87, 125.40, 125.74, 126.37, 126.79, 126.91, 127.48, 128.35, 129.91, 129.91, 133.14, 133.23, 133.63, 133.94, 134.29, 141.94, 149.53, 156.78, 183.1, 183.1 p.p.m.

Refinement

H atoms were located on stereochemical grounds and refined with fixed geometry, each riding on a carrier atom, with C—H = 0.93 - 0.98 Å and Uiso = 1.5 (for methyl-H) and 1.2 (other H atoms) Ueq(carrier atom).

Figures

Fig. 1.
Projection of (I), showing the atom labelling with 50% probability displacement ellipsoids.

Crystal data

C22H14N2O2F(000) = 1408
Mr = 338.35Dx = 1.415 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 14527 reflections
a = 7.385 (1) Åθ = 2.9–27.5°
b = 14.0730 (4) ŵ = 0.09 mm1
c = 30.5630 (9) ÅT = 295 K
V = 3176.4 (4) Å3Prism, yellow
Z = 80.14 × 0.14 × 0.07 mm

Data collection

Nonius KappaCCD diffractometer2282 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.066
horizonally mounted graphite crystalθmax = 27.5°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = −9→7
CCD rotation images, thick slices scansk = −14→18
20847 measured reflectionsl = −39→38
3643 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0589P)2 + 1.2992P] where P = (Fo2 + 2Fc2)/3
3643 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7524 (2)0.58882 (10)0.24672 (5)0.0537 (4)
O20.4748 (2)0.25831 (11)0.30424 (6)0.0632 (5)
N10.6678 (2)0.53709 (11)0.16053 (6)0.0413 (4)
H1N0.70630.59040.17060.050*
N20.5832 (2)0.42641 (11)0.11186 (6)0.0454 (4)
C10.6423 (3)0.51458 (14)0.11723 (7)0.0420 (5)
C20.5674 (3)0.39056 (14)0.15381 (7)0.0420 (5)
C30.5055 (3)0.30226 (14)0.16831 (8)0.0480 (5)
H30.47090.25560.14840.058*
C40.4967 (3)0.28566 (14)0.21264 (8)0.0476 (5)
H40.45460.22720.22250.057*
C4A0.5494 (3)0.35426 (13)0.24325 (7)0.0406 (5)
C50.5310 (3)0.33481 (15)0.29076 (8)0.0454 (5)
C5A0.5811 (3)0.41206 (14)0.32185 (7)0.0440 (5)
C60.5545 (3)0.39803 (18)0.36653 (8)0.0567 (6)
H60.50560.34120.37660.068*
C70.6007 (3)0.46845 (19)0.39578 (8)0.0632 (7)
H70.57870.45970.42550.076*
C80.6794 (3)0.55197 (18)0.38151 (8)0.0621 (7)
H80.71330.59820.40160.075*
C90.7077 (3)0.56666 (16)0.33750 (8)0.0506 (6)
H90.76090.62280.32790.061*
C9A0.6566 (3)0.49753 (14)0.30745 (7)0.0420 (5)
C100.6808 (3)0.51561 (14)0.26033 (7)0.0399 (5)
C10A0.6161 (3)0.44294 (13)0.22942 (7)0.0380 (5)
C110.6208 (3)0.45918 (13)0.18450 (7)0.0381 (5)
C120.6719 (3)0.58162 (14)0.08136 (7)0.0428 (5)
C130.7054 (3)0.67704 (15)0.08847 (8)0.0504 (6)
H130.71510.69970.11700.060*
C140.7245 (3)0.73941 (16)0.05371 (8)0.0558 (6)
H140.74810.80320.05930.067*
C150.7090 (3)0.70857 (17)0.01088 (8)0.0526 (6)
C160.6790 (3)0.61297 (17)0.00396 (8)0.0595 (6)
H160.67020.5904−0.02460.071*
C170.6617 (3)0.55016 (16)0.03836 (8)0.0560 (6)
H170.64290.48600.03270.067*
C180.7200 (4)0.7767 (2)−0.02702 (9)0.0722 (8)
H18A0.84010.8026−0.02870.108*
H18B0.63450.8273−0.02280.108*
H18C0.69260.7437−0.05370.108*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0679 (10)0.0417 (8)0.0517 (10)−0.0081 (7)−0.0037 (8)−0.0011 (7)
O20.0776 (11)0.0491 (9)0.0630 (11)−0.0064 (8)0.0067 (9)0.0101 (8)
N10.0463 (9)0.0352 (9)0.0424 (11)−0.0031 (7)−0.0018 (8)−0.0024 (8)
N20.0500 (10)0.0411 (10)0.0452 (11)0.0008 (8)0.0006 (8)−0.0064 (8)
C10.0414 (11)0.0418 (11)0.0427 (13)0.0036 (9)−0.0024 (9)−0.0058 (10)
C20.0402 (10)0.0403 (11)0.0456 (12)0.0030 (9)−0.0003 (9)−0.0045 (10)
C30.0529 (13)0.0362 (11)0.0550 (15)−0.0020 (9)0.0011 (11)−0.0098 (10)
C40.0491 (12)0.0351 (11)0.0586 (15)−0.0019 (9)0.0037 (11)−0.0012 (10)
C4A0.0379 (10)0.0360 (10)0.0478 (13)0.0042 (8)0.0018 (9)0.0012 (10)
C50.0398 (11)0.0414 (12)0.0550 (14)0.0047 (9)0.0035 (10)0.0074 (10)
C5A0.0382 (11)0.0488 (12)0.0452 (13)0.0075 (9)−0.0030 (9)0.0022 (10)
C60.0529 (13)0.0672 (15)0.0499 (15)0.0062 (11)0.0004 (11)0.0078 (13)
C70.0656 (15)0.0835 (19)0.0405 (14)0.0123 (14)−0.0019 (12)0.0012 (13)
C80.0679 (16)0.0670 (16)0.0515 (16)0.0107 (13)−0.0098 (12)−0.0144 (13)
C90.0547 (13)0.0490 (12)0.0482 (14)0.0087 (10)−0.0067 (11)−0.0057 (11)
C9A0.0400 (11)0.0428 (11)0.0432 (13)0.0098 (9)−0.0037 (9)−0.0006 (10)
C100.0391 (10)0.0338 (10)0.0468 (13)0.0044 (9)−0.0032 (9)0.0005 (9)
C10A0.0344 (10)0.0369 (10)0.0426 (12)0.0051 (8)0.0004 (8)−0.0027 (9)
C110.0369 (10)0.0341 (10)0.0435 (12)0.0013 (8)−0.0002 (9)−0.0029 (9)
C120.0431 (11)0.0441 (12)0.0412 (12)0.0005 (9)0.0005 (9)−0.0028 (10)
C130.0598 (14)0.0479 (13)0.0434 (13)−0.0037 (10)−0.0031 (10)−0.0052 (10)
C140.0656 (15)0.0490 (13)0.0526 (15)−0.0101 (11)−0.0020 (11)0.0014 (11)
C150.0445 (12)0.0649 (15)0.0484 (14)−0.0049 (11)0.0024 (10)0.0066 (12)
C160.0709 (16)0.0690 (16)0.0387 (13)−0.0046 (13)0.0007 (11)−0.0036 (12)
C170.0713 (15)0.0505 (13)0.0463 (14)−0.0040 (11)0.0021 (11)−0.0087 (11)
C180.0713 (17)0.0866 (19)0.0587 (17)−0.0103 (14)−0.0009 (13)0.0207 (15)

Geometric parameters (Å, °)

O1—C101.231 (2)C7—H70.9300
O2—C51.225 (2)C8—C91.377 (3)
N1—C111.364 (2)C8—H80.9300
N1—C11.374 (3)C9—C9A1.390 (3)
N1—H1N0.8600C9—H90.9300
N2—C11.325 (2)C9A—C101.473 (3)
N2—C21.383 (3)C10—C10A1.472 (3)
C1—C121.463 (3)C10A—C111.392 (3)
C2—C31.396 (3)C12—C131.383 (3)
C2—C111.403 (3)C12—C171.389 (3)
C3—C41.376 (3)C13—C141.385 (3)
C3—H30.9300C13—H130.9300
C4—C4A1.399 (3)C14—C151.384 (3)
C4—H40.9300C14—H140.9300
C4A—C10A1.407 (3)C15—C161.380 (3)
C4A—C51.484 (3)C15—C181.506 (3)
C5—C5A1.491 (3)C16—C171.380 (3)
C5A—C61.393 (3)C16—H160.9300
C5A—C9A1.397 (3)C17—H170.9300
C6—C71.378 (3)C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—C81.382 (3)C18—H18C0.9600
C11—N1—C1107.29 (16)C9—C9A—C5A120.2 (2)
C11—N1—H1N126.4C9—C9A—C10119.47 (19)
C1—N1—H1N126.4C5A—C9A—C10120.34 (19)
C1—N2—C2104.75 (17)O1—C10—C10A120.28 (19)
N2—C1—N1112.35 (18)O1—C10—C9A121.81 (19)
N2—C1—C12124.07 (19)C10A—C10—C9A117.91 (18)
N1—C1—C12123.55 (18)C11—C10A—C4A116.79 (18)
N2—C2—C3130.29 (19)C11—C10A—C10120.72 (18)
N2—C2—C11110.19 (17)C4A—C10A—C10122.48 (19)
C3—C2—C11119.5 (2)N1—C11—C10A131.92 (18)
C4—C3—C2118.6 (2)N1—C11—C2105.41 (18)
C4—C3—H3120.7C10A—C11—C2122.65 (18)
C2—C3—H3120.7C13—C12—C17117.9 (2)
C3—C4—C4A121.86 (19)C13—C12—C1122.37 (19)
C3—C4—H4119.1C17—C12—C1119.70 (19)
C4A—C4—H4119.1C12—C13—C14120.9 (2)
C4—C4A—C10A120.6 (2)C12—C13—H13119.6
C4—C4A—C5120.09 (18)C14—C13—H13119.6
C10A—C4A—C5119.33 (18)C15—C14—C13121.2 (2)
O2—C5—C4A121.5 (2)C15—C14—H14119.4
O2—C5—C5A120.7 (2)C13—C14—H14119.4
C4A—C5—C5A117.81 (18)C16—C15—C14117.6 (2)
C6—C5A—C9A119.1 (2)C16—C15—C18120.8 (2)
C6—C5A—C5119.1 (2)C14—C15—C18121.6 (2)
C9A—C5A—C5121.8 (2)C17—C16—C15121.5 (2)
C7—C6—C5A119.9 (2)C17—C16—H16119.2
C7—C6—H6120.0C15—C16—H16119.2
C5A—C6—H6120.0C16—C17—C12120.8 (2)
C6—C7—C8120.8 (2)C16—C17—H17119.6
C6—C7—H7119.6C12—C17—H17119.6
C8—C7—H7119.6C15—C18—H18A109.5
C9—C8—C7120.0 (2)C15—C18—H18B109.5
C9—C8—H8120.0H18A—C18—H18B109.5
C7—C8—H8120.0C15—C18—H18C109.5
C8—C9—C9A120.0 (2)H18A—C18—H18C109.5
C8—C9—H9120.0H18B—C18—H18C109.5
C9A—C9—H9120.0
C2—N2—C1—N10.8 (2)C5A—C9A—C10—C10A2.6 (3)
C2—N2—C1—C12−177.41 (18)C4—C4A—C10A—C112.0 (3)
C11—N1—C1—N2−0.6 (2)C5—C4A—C10A—C11−176.46 (17)
C11—N1—C1—C12177.64 (18)C4—C4A—C10A—C10−177.16 (18)
C1—N2—C2—C3177.6 (2)C5—C4A—C10A—C104.4 (3)
C1—N2—C2—C11−0.7 (2)O1—C10—C10A—C11−5.4 (3)
N2—C2—C3—C4−177.4 (2)C9A—C10—C10A—C11174.48 (17)
C11—C2—C3—C40.8 (3)O1—C10—C10A—C4A173.70 (18)
C2—C3—C4—C4A−0.6 (3)C9A—C10—C10A—C4A−6.4 (3)
C3—C4—C4A—C10A−0.9 (3)C1—N1—C11—C10A−178.3 (2)
C3—C4—C4A—C5177.60 (18)C1—N1—C11—C20.1 (2)
C4—C4A—C5—O22.1 (3)C4A—C10A—C11—N1176.36 (19)
C10A—C4A—C5—O2−179.44 (19)C10—C10A—C11—N1−4.5 (3)
C4—C4A—C5—C5A−177.22 (18)C4A—C10A—C11—C2−1.8 (3)
C10A—C4A—C5—C5A1.2 (3)C10—C10A—C11—C2177.34 (17)
O2—C5—C5A—C6−3.3 (3)N2—C2—C11—N10.4 (2)
C4A—C5—C5A—C6176.00 (18)C3—C2—C11—N1−178.13 (17)
O2—C5—C5A—C9A175.73 (19)N2—C2—C11—C10A179.00 (17)
C4A—C5—C5A—C9A−5.0 (3)C3—C2—C11—C10A0.5 (3)
C9A—C5A—C6—C70.7 (3)N2—C1—C12—C13169.3 (2)
C5—C5A—C6—C7179.74 (19)N1—C1—C12—C13−8.7 (3)
C5A—C6—C7—C8−2.3 (3)N2—C1—C12—C17−8.8 (3)
C6—C7—C8—C91.9 (4)N1—C1—C12—C17173.16 (19)
C7—C8—C9—C9A0.1 (3)C17—C12—C13—C141.2 (3)
C8—C9—C9A—C5A−1.7 (3)C1—C12—C13—C14−177.0 (2)
C8—C9—C9A—C10177.59 (19)C12—C13—C14—C150.7 (4)
C6—C5A—C9A—C91.3 (3)C13—C14—C15—C16−1.8 (3)
C5—C5A—C9A—C9−177.70 (18)C13—C14—C15—C18176.8 (2)
C6—C5A—C9A—C10−178.00 (18)C14—C15—C16—C171.1 (3)
C5—C5A—C9A—C103.0 (3)C18—C15—C16—C17−177.5 (2)
C9—C9A—C10—O13.2 (3)C15—C16—C17—C120.7 (4)
C5A—C9A—C10—O1−177.51 (18)C13—C12—C17—C16−1.9 (3)
C9—C9A—C10—C10A−176.75 (17)C1—C12—C17—C16176.3 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2418).

References

  • Boiocchi, M., Del Boca, L., Gmez, D. E., Fabbrizzi, L., Licchelli, M. & Monzani, E. (2004). J. Am. Chem. Soc 126, 16507–16514. [PubMed]
  • Czarnik, A. W. (1994). Acc. Chem. Res 27, 302–308.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bre’das, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–128.
  • Joux, F. & Lebaron, P. (2000). Microbes Infect.2, 1523–1535. [PubMed]
  • Kasten, F. H. (1999). Biological Techniques: Fluorescent and Luminescent Probes for Biological Activity – A Practical Guide to Technology for Quantitative Realtime Analysis, 2nd ed., edited by W. T. Mason, pp. 17–39. San Diego: Academic Press.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Peng, X., Wu, Y., Fan, J., Tian, M. & Han, K. (2005). J. Org. Chem 70, 10524–10531. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soukos, N. S., Crowley, K., Bamberg, M. P., Gillies, R., Doukas, A. G., Evans, R. & Kollias, N. (2000). Forensic Sci. Int 114, 133–138. [PubMed]
  • Yoshida, K., Ooyama, Y., Miyazaki, H. & Watanabe, S. (2002). J. Chem. Soc. Perkin Trans 2, pp. 700–707.
  • Zhu, X., Gong, A., Wang, B. & Yu, S. (2008). J. Lumin 128, 1815–1818.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography