PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1062.
Published online 2009 April 18. doi:  10.1107/S1600536809013531
PMCID: PMC2977742

4,4,5,5-Tetra­methyl-2-(4-pyridinio)-2-imidazoline-1-oxyl-3-oxide perchlorate

Abstract

The crystal structure of the title compound, C12H17N3O2 +·ClO4 , consists of 4,4,5,5-tetra­methyl-2-(4-pyridinio)imidazoline-1-oxyl-3-oxide radical cations and perchlorate anions. Both the cation and the Cl atom of the anion are located on the same twofold rotation axis, and the crystal structure shows the average structure for the radical cation. The five-membered ring assumes a half-chair conformation. The cation links with the anion via N—H(...)O hydrogen bonding.

Related literature

For general background, see: Wang et al. (2004 [triangle]); Li et al. (2003 [triangle]); Kahn et al. (2000 [triangle]); Tsukahara et al. (2003 [triangle]); Fettouhi et al. (2003 [triangle]); Zhang et al. (2004 [triangle]); Fokin et al. (2004 [triangle]); Chang et al. (2009 [triangle]). For the synthesis, see: Ullman et al. (1970 [triangle], 1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1062-scheme1.jpg

Experimental

Crystal data

  • C12H17N3O2 +·ClO4
  • M r = 334.74
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1062-efi1.jpg
  • a = 17.485 (4) Å
  • b = 11.854 (2) Å
  • c = 14.921 (2) Å
  • V = 3092.6 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 273 K
  • 0.33 × 0.26 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.915, T max = 0.930
  • 3994 measured reflections
  • 1204 independent reflections
  • 1169 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.102
  • S = 1.06
  • 1204 reflections
  • 103 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 457 Friedel pairs
  • Flack parameter: 0.12 (10)

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013531/xu2504sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013531/xu2504Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant Nos. 20471026 and 20771054)) and the Education Committee of Henan Province, China (grant No. 2007150027).

supplementary crystallographic information

Comment

The major research aims in the field of molecular magnetism are on one hand the chemical design of molecular assemblies that exhibit a spontaneous magnetization and on the other hand the rationalization of magneto-structural correlation (Wang et al., 2004; Li et al., 2003; Kahn et al., 2000; Tsukahara et al., 2003). Nitronyl nitroxide radicals (NITR), stable organic radicals, have played an important role in the design and synthesis of molecular magnetic materials (Fettouhi et al., 2003; Zhang et al., 2004; Fokin et al., 2004). Many structures have been investigated on the coordination of nitronyl nitroxide radicals to metals, but less on the non-covalent weak interactions of nitronyl nitroxide radicals with other molecules (Chang et al., 2009). Taking account of these, we report on the molecular assemblies of NITpPy and perchlorate anion in order to further understand the coordination chemistry of nitronyl nitroxide radicals.

The structure of the title compound is shown in Fig. 1. The compound consists of a discrete [NITpPyH] cation and a perchlorate anion. NITpPy acts as a proton sponge by accepting a proton. The transfer of protons results in symmetric intermolecular hydrogen bonds: the double hydrogen bonds occur between two oxygen atoms from perchlorate anion and one nitrogen atom from the pyridyl ring (Table 1). The nitronyl nitroxide fragment O—N—C—N—O is almost coplanar, but make a dihedral angle of 17.0° with the pyridyl ring. In the unit cell cations and anions are alternatively arranged.

Experimental

NITpPy was synthesized according to a literature procedure (Ullman et al., 1970; Ullman et al., 1972). The title compound was obtained serendipitously from the reaction of copper perchlorate hydrate (1 mmol) and NITpPy (2 mmol) in methanol (10 ml). The mixture was stirred for 4 h at room temperature and then filtered. Subsequently, the filtrate was diffused with diethyl ether vapor and dark-purple block crystals were obtained one week later.

Refinement

The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å, and Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C,N) for others.

Figures

Fig. 1.
The molecular structure of the title compound with atom labeling. The thermal ellipsoids are drawn at 30% probability level [symmetry code: (A) -x,-y+1,z]. Dashed lines indicate hydrogen bonding.

Crystal data

C12H17N3O2+·ClO4F(000) = 1400
Mr = 334.74Dx = 1.438 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2949 reflections
a = 17.485 (4) Åθ = 2.3–29.0°
b = 11.854 (2) ŵ = 0.28 mm1
c = 14.921 (2) ÅT = 273 K
V = 3092.6 (10) Å3Block, dark-purple
Z = 80.33 × 0.26 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer1204 independent reflections
Radiation source: fine-focus sealed tube1169 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→20
Tmin = 0.915, Tmax = 0.930k = −11→14
3994 measured reflectionsl = −15→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033w = 1/[σ2(Fo2) + (0.0762P)2 + 1.0334P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.27 e Å3
1204 reflectionsΔρmin = −0.15 e Å3
103 parametersExtinction correction: SHELXTL (Bruker, 2000), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0026 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 457 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.12 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.00000.50000.05797 (7)0.0787 (4)
O20.0203 (2)0.4065 (5)0.0039 (3)0.1497 (15)
O30.06280 (15)0.5281 (3)0.1140 (2)0.1055 (9)
N10.00000.50000.2971 (2)0.0684 (10)
H1B0.00000.50000.23950.082*
N20.05399 (9)0.54721 (12)0.62987 (12)0.0399 (4)
C10.04640 (17)0.5698 (2)0.33929 (18)0.0626 (6)
H1A0.07850.61690.30670.075*
C20.04743 (13)0.57302 (19)0.43134 (16)0.0520 (5)
H2A0.07930.62320.46140.062*
C30.00000.50000.4789 (2)0.0417 (6)
C40.00000.50000.5764 (2)0.0379 (6)
C50.02991 (11)0.54883 (16)0.72622 (14)0.0425 (5)
C60.09853 (14)0.5301 (2)0.78664 (19)0.0630 (6)
H6A0.13220.59390.78270.095*
H6B0.12530.46340.76800.095*
H6C0.08160.52130.84740.095*
C7−0.00457 (14)0.66478 (19)0.74312 (19)0.0616 (7)
H7A0.03520.72060.74220.092*
H7B−0.02930.66540.80060.092*
H7C−0.04140.68150.69720.092*
O10.11652 (8)0.59302 (15)0.60418 (12)0.0599 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0631 (5)0.1338 (9)0.0392 (5)−0.0116 (5)0.0000.000
O20.154 (3)0.199 (4)0.096 (3)0.023 (3)0.013 (2)−0.053 (3)
O30.0789 (14)0.167 (2)0.0707 (17)−0.0372 (15)−0.0088 (13)0.0105 (16)
N10.092 (2)0.0776 (18)0.0360 (17)0.0404 (17)0.0000.000
N20.0356 (7)0.0440 (7)0.0400 (10)−0.0075 (6)−0.0005 (7)−0.0002 (6)
C10.0729 (15)0.0692 (14)0.0457 (14)0.0203 (11)0.0104 (11)0.0154 (11)
C20.0547 (12)0.0570 (10)0.0443 (13)0.0068 (9)0.0035 (9)0.0088 (9)
C30.0394 (13)0.0430 (12)0.0425 (18)0.0116 (10)0.0000.000
C40.0367 (12)0.0376 (12)0.0394 (18)−0.0002 (9)0.0000.000
C50.0409 (10)0.0499 (10)0.0368 (11)−0.0056 (9)−0.0015 (9)−0.0025 (8)
C60.0548 (12)0.0865 (15)0.0478 (15)−0.0160 (12)−0.0141 (11)0.0046 (11)
C70.0683 (14)0.0550 (11)0.0614 (17)−0.0014 (10)0.0048 (12)−0.0153 (10)
O10.0461 (7)0.0784 (10)0.0553 (11)−0.0250 (7)0.0047 (7)0.0008 (8)

Geometric parameters (Å, °)

Cl1—O2i1.416 (4)C2—H2A0.9300
Cl1—O21.416 (4)C3—C2i1.393 (3)
Cl1—O31.420 (3)C3—C41.455 (4)
Cl1—O3i1.420 (3)C4—N2i1.357 (2)
N1—C11.318 (4)C5—C61.517 (3)
N1—C1i1.318 (4)C5—C71.522 (3)
N1—H1B0.8600C5—C5i1.560 (4)
N2—O11.280 (2)C6—H6A0.9600
N2—C41.357 (2)C6—H6B0.9600
N2—C51.498 (3)C6—H6C0.9600
C1—C21.374 (4)C7—H7A0.9600
C1—H1A0.9300C7—H7B0.9600
C2—C31.393 (3)C7—H7C0.9600
O2i—Cl1—O2110.5 (5)N2—C4—N2i108.0 (3)
O2i—Cl1—O3110.2 (3)N2—C4—C3126.01 (13)
O2—Cl1—O3109.0 (2)N2i—C4—C3126.01 (13)
O2i—Cl1—O3i109.0 (2)N2—C5—C6110.26 (18)
O2—Cl1—O3i110.2 (3)N2—C5—C7106.37 (18)
O3—Cl1—O3i107.9 (2)C6—C5—C7110.28 (19)
C1—N1—C1i123.0 (3)N2—C5—C5i100.31 (10)
C1—N1—H1B118.5C6—C5—C5i114.96 (17)
C1i—N1—H1B118.5C7—C5—C5i113.9 (2)
O1—N2—C4126.40 (18)C5—C6—H6A109.5
O1—N2—C5121.47 (16)C5—C6—H6B109.5
C4—N2—C5111.96 (16)H6A—C6—H6B109.5
N1—C1—C2120.2 (3)C5—C6—H6C109.5
N1—C1—H1A119.9H6A—C6—H6C109.5
C2—C1—H1A119.9H6B—C6—H6C109.5
C1—C2—C3118.9 (2)C5—C7—H7A109.5
C1—C2—H2A120.5C5—C7—H7B109.5
C3—C2—H2A120.5H7A—C7—H7B109.5
C2i—C3—C2118.8 (3)C5—C7—H7C109.5
C2i—C3—C4120.61 (16)H7A—C7—H7C109.5
C2—C3—C4120.61 (16)H7B—C7—H7C109.5
C1i—N1—C1—C2−0.68 (16)C2—C3—C4—N2−15.56 (13)
N1—C1—C2—C31.3 (3)C2i—C3—C4—N2i−15.56 (13)
C1—C2—C3—C2i−0.65 (15)C2—C3—C4—N2i164.44 (13)
C1—C2—C3—C4179.35 (15)O1—N2—C5—C6−39.6 (2)
O1—N2—C4—N2i175.0 (2)C4—N2—C5—C6144.69 (16)
C5—N2—C4—N2i−9.58 (9)O1—N2—C5—C780.0 (2)
O1—N2—C4—C3−5.0 (2)C4—N2—C5—C7−95.74 (16)
C5—N2—C4—C3170.42 (9)O1—N2—C5—C5i−161.21 (18)
C2i—C3—C4—N2164.44 (13)C4—N2—C5—C5i23.1 (2)

Symmetry codes: (i) −x, −y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.862.202.963 (4)149

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2504).

References

  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chang, J. L., Gao, Z. Y. & Jiang, K. (2009). Acta Cryst. E65, o200. [PMC free article] [PubMed]
  • Fettouhi, M., El Ali, B., Morsy, M., Golhen, S., Ouahab, L., Le Guennic, B., Saillard, J.-Y., Daro, N., Sutter, J.-P. & Amouyal, E. (2003). Inorg. Chem.42, 1316–1321. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fokin, S. V., Ovcharenko, V. I., Romanenko, G. V. & Ikorskii, V. N. (2004). Inorg. Chem.43, 969–977. [PubMed]
  • Kahn, M. L., Sutter, S., Guionneau, P., Ouahab, L., Kahn, O. & Chasseau, D. (2000). J. Am. Chem. Soc.122, 3413–3421.
  • Li, L.-C., Liu, Z.-L., Turner, S. S., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2003). New J. Chem.27, 752–754.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tsukahara, Y., Kamatani, T., Suzuki, T. & Kaizaki, S. J. (2003). J. Chem. Soc. Dalton Trans. pp. 1276–1279.
  • Ullman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem.35, 3623–3628.
  • Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc.94, 7049–7059.
  • Wang, H.-M., Liu, Z.-L., Zhang, D.-Q., Geng, H., Shuai, Z.-G. & Zhu, D.-B. (2004). Inorg. Chem.43, 4091–4098. [PubMed]
  • Zhang, C.-X., Liu, Z.-Q., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2004). Inorg. Chim. Acta, 357, 376–379.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography