PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1057.
Published online 2009 April 18. doi:  10.1107/S1600536809013154
PMCID: PMC2977738

Methyl 2,3-(3,6,9-trioxaundecane-1,11-diyldithio)-1,4,5,8-tetra­thia­fulvalene-6-carboxyl­ate

Abstract

In the title mol­ecule, C16H20O5S6, the two five-membered rings form a dihedral angle of 4.7 (3)°. The crystal packing exhibits weak inter­molecular C—H(...)O hydrogen bonds, which link the mol­ecules into chains propagating in [1An external file that holds a picture, illustration, etc.
Object name is e-65-o1057-efi1.jpg0], and π–π inter­actions, indicated by the short distances [3.756 (5) Å] between the centroids of five-membered rings from mol­ecules related by translation along the b axis.

Related literature

For background to tetra­thia­fulvalene derivatives, see Hansen et al. (1992 [triangle]); Trippé et al. (2002 [triangle]). For details of the synthesis, see Liu et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1057-scheme1.jpg

Experimental

Crystal data

  • C16H20O5S6
  • M r = 484.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1057-efi2.jpg
  • a = 22.604 (5) Å
  • b = 5.2048 (10) Å
  • c = 17.801 (4) Å
  • β = 90.65 (3)°
  • V = 2094.1 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 291 K
  • 0.20 × 0.13 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.876, T max = 0.923
  • 9505 measured reflections
  • 4254 independent reflections
  • 3370 reflections with I > 2σ(I)
  • R int = 0.101

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.172
  • S = 0.96
  • 4254 reflections
  • 245 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.46 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1855 Friedel pairs
  • Flack parameter: −0.12 (12)

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013154/cv2536sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013154/cv2536Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 20060184001) and the Open Project of the State Key Laboratory of Supramolecular Structures and Materials, Jilin University.

supplementary crystallographic information

Comment

Cation sensors based on tetrathiafulvalene (TTF) derivatives have currently attracted widespread attention because such molecules show electrochemical recognition of various metal cations (Trippé et al., 2002). We incorporated TTF with a 15-membered O, S hybrid crown ether to synthesize the title compound because it should be able to bind lithium ion (Hansen et al., 1992). We report herein the synthesis and structure of the title compound, (I).

The molecular structure of (I),C16H20O5S6, is shown in Fig.1. Every molecule contains one TTF moiety and one dithia-15-crown-5 ring.TTF moiety is composed of two nearly coplanar five-membered rings with a dehedral angle of 4.68 (27) °. The dithia-15-crown-5 ring adopt a twiste conformation and situated almost perpendicular to TTF moiety. Owing to the absence of strong hydrogen bond donors, the crystal packing is stabilized by weak C—H···O hydrogen bonds, involving the O atoms of the crown ether as acceptors, and the methyl C—H groups as donors (Table 1). The crystal packing exhibits also π–π interactions, proved by short distance Cg1···Cg2ii of 3.756 (5) Å, where Cg1 and Cg2 are centroids of S1/C3/C4/S2/C5 and S3/C6/S4/C7/C8 rings, respectively [symmetry code: (ii) x, 1+y, z].

Experimental

6,7-Dimethoxycarbonyl-2,3- bis(3',6',9'-trioxoundecylthio)-1,4,5,8-tetrathiafulvalene (Liu et al., 2000) (500 mg, 0.92 mmol) were dissovled in DMF (40 ml), LiBr (0.91 g, 10.5 mmol) and a drop of water was added. The mixture was heated at 80 °C for 2 h. After cooling to room temperature, saturated aqueous sodium chloride was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried (MgSO4) and then concentrated under reduced pressure. The resulting red oil was purified by column chromatography [silica gel, eluent CH2Cl2-AcOEt (4: 1 v/v)] to afford the title compound as a red solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of dichloromethane-n-hexane solution at room temperature.

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.93-0.97 Å) and were included in the refinement in the riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with the atom numbering. Displacement ellipsoids are drawn at the 30% probalility level. H atoms omitted for clarity.

Crystal data

C16H20O5S6F(000) = 1008
Mr = 484.68Dx = 1.537 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 7343 reflections
a = 22.604 (5) Åθ = 3.4–27.1°
b = 5.2048 (10) ŵ = 0.68 mm1
c = 17.801 (4) ÅT = 291 K
β = 90.65 (3)°Block, red
V = 2094.1 (7) Å30.20 × 0.13 × 0.12 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer4254 independent reflections
Radiation source: fine-focus sealed tube3370 reflections with I > 2σ(I)
graphiteRint = 0.101
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −28→28
Tmin = 0.876, Tmax = 0.923k = −6→6
9505 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.172w = 1/[σ2(Fo2) + (0.0878P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
4254 reflectionsΔρmax = 0.49 e Å3
245 parametersΔρmin = −0.45 e Å3
2 restraintsAbsolute structure: Flack (1983), 1855 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.12 (12)

Special details

Experimental. (See detailed section in the paper)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4826 (4)1.8931 (13)0.5758 (4)0.0638 (17)
H1A0.44191.88580.55980.096*
H1B0.50761.85460.53400.096*
H1C0.49152.06220.59420.096*
C20.4534 (3)1.7154 (11)0.6912 (3)0.0426 (12)
C30.4679 (2)1.5069 (10)0.7458 (3)0.0388 (11)
C40.4324 (2)1.4479 (11)0.8031 (3)0.0413 (11)
H40.39791.54040.81150.050*
C50.5199 (2)1.1345 (9)0.8157 (3)0.0368 (10)
C60.5581 (2)0.9558 (10)0.8382 (3)0.0392 (11)
C70.6165 (2)0.6004 (9)0.9111 (3)0.0361 (10)
C80.6520 (2)0.6615 (10)0.8524 (3)0.0405 (11)
C90.7699 (3)0.7676 (12)0.8282 (3)0.0507 (13)
H9A0.80860.70110.81540.061*
H9B0.75800.88880.78950.061*
C100.7740 (3)0.9042 (10)0.9022 (3)0.0438 (12)
H10A0.73720.99300.91220.053*
H10B0.78130.78180.94230.053*
C110.8288 (3)1.2375 (11)0.9635 (4)0.0546 (15)
H11A0.79011.27830.98340.066*
H11B0.84741.39780.94920.066*
C120.8653 (3)1.1139 (13)1.0241 (4)0.0609 (16)
H12A0.90371.07071.00390.073*
H12B0.87151.23731.06430.073*
C130.7993 (3)0.9435 (13)1.1131 (4)0.0578 (15)
H13A0.76921.06161.09490.069*
H13B0.82021.02451.15470.069*
C140.7710 (3)0.7016 (13)1.1390 (4)0.0606 (16)
H14A0.80200.57761.14970.073*
H14B0.75110.73681.18580.073*
C150.6760 (3)0.7176 (13)1.0822 (3)0.0577 (16)
H15A0.67840.84291.04200.069*
H15B0.66770.80861.12840.069*
C160.6266 (3)0.5309 (13)1.0653 (3)0.0519 (14)
H16A0.58940.62401.06490.062*
H16B0.62500.40581.10560.062*
O10.49274 (19)1.7087 (8)0.6344 (2)0.0524 (10)
O20.4141 (2)1.8633 (9)0.6967 (2)0.0571 (11)
O30.82120 (18)1.0828 (8)0.8984 (2)0.0526 (10)
O40.8395 (2)0.8877 (8)1.0548 (2)0.0560 (10)
O50.7302 (2)0.5875 (8)1.0894 (2)0.0587 (11)
S10.53276 (5)1.3254 (3)0.73569 (7)0.0415 (3)
S20.45240 (6)1.1969 (3)0.86052 (7)0.0456 (3)
S30.62439 (6)0.8944 (3)0.78907 (7)0.0453 (3)
S40.54731 (6)0.7502 (3)0.91476 (7)0.0417 (3)
S50.71732 (7)0.5055 (3)0.83051 (8)0.0492 (4)
S60.63337 (7)0.3600 (3)0.97634 (7)0.0486 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.081 (5)0.063 (4)0.047 (3)−0.001 (4)0.006 (3)0.016 (3)
C20.043 (3)0.044 (3)0.040 (3)−0.004 (2)−0.003 (2)−0.004 (2)
C30.031 (3)0.049 (3)0.036 (3)0.000 (2)0.0000 (19)0.000 (2)
C40.028 (3)0.050 (3)0.046 (3)−0.001 (2)0.005 (2)−0.005 (2)
C50.032 (3)0.042 (2)0.037 (3)−0.002 (2)0.0045 (19)−0.0003 (19)
C60.044 (3)0.038 (2)0.035 (2)−0.013 (2)0.005 (2)−0.0006 (18)
C70.038 (3)0.033 (2)0.038 (2)−0.005 (2)0.002 (2)−0.0025 (18)
C80.045 (3)0.038 (2)0.038 (3)−0.006 (2)0.006 (2)−0.0047 (19)
C90.046 (3)0.064 (3)0.042 (3)0.000 (3)0.014 (2)0.004 (2)
C100.039 (3)0.044 (3)0.049 (3)−0.002 (2)0.011 (2)0.003 (2)
C110.048 (3)0.043 (3)0.074 (4)−0.003 (3)0.021 (3)−0.001 (3)
C120.049 (4)0.062 (4)0.072 (4)−0.008 (3)0.008 (3)0.001 (3)
C130.058 (4)0.063 (4)0.053 (3)−0.005 (3)0.007 (3)−0.009 (3)
C140.065 (4)0.070 (4)0.047 (3)−0.009 (3)−0.003 (3)0.007 (3)
C150.071 (4)0.061 (3)0.042 (3)0.011 (3)0.006 (3)−0.006 (3)
C160.048 (3)0.071 (4)0.038 (3)0.003 (3)0.018 (2)0.006 (2)
O10.050 (2)0.060 (2)0.048 (2)0.014 (2)0.0091 (18)0.0153 (18)
O20.050 (2)0.064 (2)0.058 (3)0.024 (2)0.0010 (19)0.0008 (19)
O30.043 (2)0.058 (2)0.057 (2)−0.007 (2)0.0155 (18)0.0001 (18)
O40.061 (3)0.052 (2)0.054 (2)0.006 (2)0.0100 (19)0.0062 (17)
O50.056 (3)0.062 (2)0.058 (3)−0.001 (2)0.001 (2)−0.0022 (19)
S10.0371 (7)0.0476 (7)0.0400 (6)0.0027 (6)0.0104 (5)0.0065 (5)
S20.0393 (7)0.0540 (7)0.0439 (7)−0.0046 (6)0.0138 (5)0.0040 (6)
S30.0413 (7)0.0513 (7)0.0436 (7)0.0017 (6)0.0109 (5)0.0095 (5)
S40.0392 (7)0.0459 (7)0.0403 (6)−0.0028 (5)0.0083 (5)0.0052 (5)
S50.0482 (8)0.0440 (7)0.0557 (9)0.0045 (6)0.0117 (6)−0.0058 (6)
S60.0592 (9)0.0414 (7)0.0452 (7)−0.0013 (6)0.0026 (6)0.0061 (5)

Geometric parameters (Å, °)

C1—O11.434 (7)C10—O31.418 (7)
C1—H1A0.9600C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C11—O31.420 (7)
C2—O21.182 (7)C11—C121.496 (10)
C2—O11.354 (7)C11—H11A0.9700
C2—C31.491 (7)C11—H11B0.9700
C3—C41.342 (7)C12—O41.425 (8)
C3—S11.754 (5)C12—H12A0.9700
C4—S21.716 (6)C12—H12B0.9700
C4—H40.9300C13—O41.418 (7)
C5—C61.328 (7)C13—C141.487 (9)
C5—S21.761 (5)C13—H13A0.9700
C5—S11.763 (5)C13—H13B0.9700
C6—S41.752 (5)C14—O51.403 (8)
C6—S31.772 (6)C14—H14A0.9700
C7—C81.362 (7)C14—H14B0.9700
C7—S61.747 (5)C15—O51.404 (8)
C7—S41.749 (6)C15—C161.507 (10)
C8—S51.733 (6)C15—H15A0.9700
C8—S31.765 (6)C15—H15B0.9700
C9—C101.498 (8)C16—S61.824 (6)
C9—S51.811 (6)C16—H16A0.9700
C9—H9A0.9700C16—H16B0.9700
C9—H9B0.9700
O1—C1—H1A109.5C12—C11—H11B108.8
O1—C1—H1B109.5H11A—C11—H11B107.7
H1A—C1—H1B109.5O4—C12—C11114.1 (5)
O1—C1—H1C109.5O4—C12—H12A108.7
H1A—C1—H1C109.5C11—C12—H12A108.7
H1B—C1—H1C109.5O4—C12—H12B108.7
O2—C2—O1125.4 (5)C11—C12—H12B108.7
O2—C2—C3125.5 (6)H12A—C12—H12B107.6
O1—C2—C3109.1 (5)O4—C13—C14109.6 (5)
C4—C3—C2122.2 (5)O4—C13—H13A109.8
C4—C3—S1117.6 (4)C14—C13—H13A109.8
C2—C3—S1120.2 (4)O4—C13—H13B109.8
C3—C4—S2118.1 (4)C14—C13—H13B109.8
C3—C4—H4121.0H13A—C13—H13B108.2
S2—C4—H4121.0O5—C14—C13116.4 (5)
C6—C5—S2123.8 (4)O5—C14—H14A108.2
C6—C5—S1121.7 (4)C13—C14—H14A108.2
S2—C5—S1114.4 (3)O5—C14—H14B108.2
C5—C6—S4124.5 (4)C13—C14—H14B108.2
C5—C6—S3121.9 (4)H14A—C14—H14B107.3
S4—C6—S3113.6 (3)O5—C15—C16110.5 (5)
C8—C7—S6123.4 (4)O5—C15—H15A109.5
C8—C7—S4117.4 (4)C16—C15—H15A109.5
S6—C7—S4118.9 (3)O5—C15—H15B109.5
C7—C8—S5125.0 (4)C16—C15—H15B109.5
C7—C8—S3116.3 (4)H15A—C15—H15B108.1
S5—C8—S3118.3 (3)C15—C16—S6114.7 (4)
C10—C9—S5111.8 (4)C15—C16—H16A108.6
C10—C9—H9A109.3S6—C16—H16A108.6
S5—C9—H9A109.3C15—C16—H16B108.6
C10—C9—H9B109.3S6—C16—H16B108.6
S5—C9—H9B109.3H16A—C16—H16B107.6
H9A—C9—H9B107.9C2—O1—C1115.2 (5)
O3—C10—C9107.9 (4)C10—O3—C11114.6 (4)
O3—C10—H10A110.1C13—O4—C12112.3 (5)
C9—C10—H10A110.1C14—O5—C15114.9 (5)
O3—C10—H10B110.1C3—S1—C594.3 (2)
C9—C10—H10B110.1C4—S2—C595.4 (2)
H10A—C10—H10B108.4C8—S3—C695.9 (3)
O3—C11—C12113.9 (5)C7—S4—C696.3 (3)
O3—C11—H11A108.8C8—S5—C9102.3 (3)
C12—C11—H11A108.8C7—S6—C16102.0 (3)
O3—C11—H11B108.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.353.127 (7)141

Symmetry codes: (i) x−1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2536).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hansen, T. K., Jørgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem.57, 6403–6409.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, S. G., Liu, H. Y., Bandyopadhyay, K., Gao, Z. Q. & Echegoyen, L. (2000). J. Org. Chem.65, 3292–3298. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett.4, 2461–2464. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography