PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1054.
Published online 2009 April 18. doi:  10.1107/S1600536809013373
PMCID: PMC2977735

4-(4-Methoxy­phen­yl)-3-methyl-1,6-di­oxa-2,8-diaza-s-indacen-5(7H)-one

Abstract

In the mol­ecule of the title compound, C16H12N2O4, the pyridine ring is oriented at the same dihedral angle of 2.92 (3)° with respect to the furan and isoxazole rings, while the dihedral angle between furan and isoxazole rings is 1.34 (3)°. The dihedral angle between the benzene and pyridine rings is 53.23 (3)°. In the crystal structure, inter­molecular C—H(...)O inter­actions link the mol­ecules into chains. Weak π–π contacts between isoxazole and benzene rings [centroid–centroid distance = 3.969 (3) Å] may further stabilize the structure.

Related literature

For general background to isoxazoles, see: Pinho & Teresa (2005 [triangle]); Shin et al. (2005 [triangle]); Tatee et al. (1987 [triangle]). For a related structure, see: Chande et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1054-scheme1.jpg

Experimental

Crystal data

  • C16H12N2O4
  • M r = 296.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1054-efi1.jpg
  • a = 13.8513 (16) Å
  • b = 7.6116 (11) Å
  • c = 12.6732 (15) Å
  • β = 95.592 (1)°
  • V = 1329.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.14 × 0.11 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.985, T max = 0.995
  • 6625 measured reflections
  • 2333 independent reflections
  • 1267 reflections with I > 2σ(I)
  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.093
  • S = 1.03
  • 2333 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013373/hk2664sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013373/hk2664Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) for financial support.

supplementary crystallographic information

Comment

Isoxazole is one of the important heterocyclic units, which has been widely used as a key building block for pharmaceutical agents. Its derivatives are endowed with many pharmacological properties, such as hypoglycemic, analgesic, anti-inflammatory, anti-bacterial, anti-cancer and anti-HIV activities (Shin et al., 2005). Besides, they also have agrochemical properties including herbicidal and soil fungicidal activities, thus they have been used as pesticides and insecticides (Pinho & Teresa, 2005). Among the derivatives of isoxazole, isoxazolopyridine has evoked people's interest and concern, since it showed muscle relaxant, anticonvulsant and CNS depressant activities (Tatee et al., 1987). To the best of our knowledge, modification and synthesis of polycyclic-fused isoxazolopyridine have never been reported. Thus, synthesis of structurally diverse isoxazole-based (Chande et al., 2005) small molecules is of great significance. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (O1/C1-C4), B (O3/N2/C6-C8), C (N1/C1/C4-C7) and D (C10-C15) are, of course, planar, and they are oriented at dihedral angles of A/B = 1.34 (3), A/C = 2.92 (3), A/D = 56.13 (4), B/C = 2.92 (3), B/D = 55.97 (4) and C/D = 53.23 (3) °.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the isoxazole and phenyl rings, Cg2—Cg4i [symmetry code: (i) x, 3/2 - y, z + 1/2, where Cg2 and Cg4 are centroids of the rings B (O3/N2/C6-C8) and D (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distance of 3.969 (3) Å.

Experimental

The title compound was prepared by the reaction of 4-methoxybenzaldehyde (1 mmol), tetronic acid (1 mmol) and 3-methylisoxazol-5-amine (1 mmol) in water (2 ml). Crystals suitable for X-ray analysis were obtained by slow evaporation of an aqueous ethanol solution (95%) (yield; 91%, m.p. 504-506 K). IR (cm-1): 1759; 1H NMR (DMSO-d6): 7.56 (d, 2H, J = 8.8 Hz, ArH), 7.12 (d, 2H, J = 8.8 Hz, ArH), 5.49 (s, 2H, CH2), 3.87 (s, 3H, OCH3), 2.16 (s, 3H, CH3); 13C NMR (DMSO-d6): 171.84, 170.16, 167.00, 160.71, 157.07, 149.38, 131.54, 121.73, 113.40, 113.30, 112.89, 68.72, 55.30, 12.86.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H12N2O4F(000) = 616
Mr = 296.28Dx = 1.480 Mg m3
Monoclinic, P21/cMelting point = 504–506 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.8513 (16) ÅCell parameters from 1263 reflections
b = 7.6116 (11) Åθ = 3.0–27.5°
c = 12.6732 (15) ŵ = 0.11 mm1
β = 95.592 (1)°T = 298 K
V = 1329.8 (3) Å3Block, colorless
Z = 40.14 × 0.11 × 0.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer2333 independent reflections
Radiation source: fine-focus sealed tube1267 reflections with I > 2σ(I)
graphiteRint = 0.085
[var phi] and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.985, Tmax = 0.995k = −5→9
6625 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.093w = 1/[σ2(Fo2) + (0.0242P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2333 reflectionsΔρmax = 0.14 e Å3
201 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.19564 (17)−0.0001 (3)0.93775 (17)0.0496 (6)
N20.42384 (17)−0.1679 (3)0.8929 (2)0.0646 (7)
O1−0.00728 (12)0.1886 (3)0.77882 (13)0.0530 (5)
O20.03096 (12)0.1945 (3)0.61265 (14)0.0561 (5)
O30.35098 (14)−0.1183 (3)0.95948 (14)0.0625 (6)
O40.30666 (13)0.0742 (2)0.28784 (14)0.0553 (6)
C10.1314 (2)0.0595 (3)0.8621 (2)0.0413 (7)
C20.03488 (19)0.1313 (4)0.8820 (2)0.0545 (8)
H2A−0.00490.04150.91060.065*
H2B0.04180.22910.93120.065*
C30.05378 (18)0.1546 (4)0.7033 (2)0.0431 (7)
C40.14180 (18)0.0708 (3)0.75423 (18)0.0371 (6)
C50.22780 (17)0.0190 (3)0.71290 (19)0.0364 (6)
C60.29723 (19)−0.0463 (3)0.7918 (2)0.0411 (7)
C70.2760 (2)−0.0493 (4)0.8971 (2)0.0461 (7)
C80.3921 (2)−0.1270 (4)0.7960 (2)0.0496 (7)
C90.45235 (19)−0.1739 (4)0.7089 (2)0.0653 (9)
H9A0.4837−0.07030.68570.098*
H9B0.4117−0.22320.65070.098*
H9C0.5006−0.25840.73440.098*
C100.24536 (17)0.0332 (3)0.60100 (18)0.0366 (6)
C110.18199 (17)−0.0388 (3)0.52099 (19)0.0410 (7)
H110.1263−0.09550.53850.049*
C120.19987 (17)−0.0281 (3)0.41641 (19)0.0424 (7)
H120.1567−0.07840.36420.051*
C130.28166 (18)0.0570 (4)0.3886 (2)0.0411 (7)
C140.34544 (18)0.1327 (3)0.4676 (2)0.0438 (7)
H140.40020.19210.44980.053*
C150.32724 (17)0.1194 (3)0.5715 (2)0.0420 (7)
H150.37060.16910.62370.050*
C160.2431 (2)0.0018 (4)0.2031 (2)0.0576 (8)
H16A0.2355−0.12190.21450.086*
H16B0.27030.02030.13710.086*
H16C0.18100.05840.20080.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0622 (16)0.0493 (17)0.0355 (14)−0.0014 (14)−0.0045 (12)0.0028 (12)
N20.0610 (16)0.0695 (19)0.0598 (18)0.0076 (15)−0.0117 (14)0.0066 (14)
O10.0524 (11)0.0708 (14)0.0364 (12)0.0069 (11)0.0064 (9)0.0018 (10)
O20.0512 (11)0.0798 (15)0.0365 (12)0.0089 (11)0.0012 (9)0.0128 (11)
O30.0690 (13)0.0704 (16)0.0447 (13)0.0046 (12)−0.0123 (11)0.0081 (11)
O40.0597 (12)0.0746 (15)0.0319 (12)−0.0042 (11)0.0065 (10)−0.0003 (10)
C10.0515 (16)0.0396 (18)0.0320 (16)−0.0066 (14)−0.0008 (13)−0.0008 (13)
C20.0623 (19)0.067 (2)0.0340 (17)−0.0022 (17)0.0060 (14)−0.0004 (15)
C30.0476 (17)0.048 (2)0.0345 (17)−0.0057 (15)0.0068 (14)−0.0007 (14)
C40.0417 (15)0.0376 (17)0.0311 (16)−0.0049 (13)−0.0001 (12)0.0018 (12)
C50.0430 (15)0.0349 (17)0.0294 (15)−0.0061 (13)−0.0056 (12)−0.0006 (12)
C60.0458 (16)0.0413 (18)0.0351 (17)−0.0052 (14)−0.0020 (13)−0.0021 (13)
C70.0537 (18)0.0376 (19)0.0431 (19)−0.0019 (15)−0.0154 (15)0.0031 (14)
C80.0483 (17)0.049 (2)0.0489 (19)−0.0036 (16)−0.0102 (14)−0.0005 (15)
C90.0561 (18)0.069 (2)0.069 (2)0.0130 (18)−0.0001 (16)0.0028 (17)
C100.0384 (15)0.0395 (18)0.0310 (16)0.0010 (13)−0.0012 (12)0.0006 (12)
C110.0371 (15)0.0471 (19)0.0385 (18)−0.0041 (13)0.0015 (12)0.0026 (13)
C120.0411 (16)0.050 (2)0.0339 (17)−0.0022 (15)−0.0058 (13)−0.0066 (13)
C130.0441 (16)0.0436 (19)0.0355 (17)0.0061 (14)0.0030 (13)−0.0004 (13)
C140.0389 (15)0.051 (2)0.0418 (18)−0.0034 (14)0.0049 (13)0.0020 (14)
C150.0380 (15)0.0470 (19)0.0393 (17)−0.0039 (14)−0.0052 (12)−0.0028 (14)
C160.080 (2)0.057 (2)0.0342 (17)0.0050 (18)−0.0010 (15)−0.0030 (15)

Geometric parameters (Å, °)

N1—C11.324 (3)C6—C81.446 (3)
N1—C71.325 (3)C8—C91.490 (4)
N2—C81.302 (3)C9—H9A0.9600
N2—O31.428 (3)C9—H9B0.9600
O1—C31.363 (3)C9—H9C0.9600
O1—C21.446 (3)C10—C111.388 (3)
O2—C31.200 (3)C10—C151.393 (3)
O3—C71.349 (3)C11—C121.374 (3)
O4—C131.361 (3)C11—H110.9300
O4—C161.431 (3)C12—C131.380 (3)
C1—C41.391 (3)C12—H120.9300
C1—C21.488 (3)C13—C141.394 (3)
C2—H2A0.9700C14—C151.368 (3)
C2—H2B0.9700C14—H140.9300
C3—C41.469 (3)C15—H150.9300
C4—C51.404 (3)C16—H16A0.9600
C5—C61.409 (3)C16—H16B0.9600
C5—C101.466 (3)C16—H16C0.9600
C6—C71.395 (3)
C1—N1—C7110.3 (2)C6—C8—C9130.3 (3)
C8—N2—O3107.5 (2)C8—C9—H9A109.5
C3—O1—C2110.7 (2)C8—C9—H9B109.5
C7—O3—N2107.8 (2)H9A—C9—H9B109.5
C13—O4—C16118.2 (2)C8—C9—H9C109.5
N1—C1—C4127.3 (3)H9A—C9—H9C109.5
N1—C1—C2123.7 (2)H9B—C9—H9C109.5
C4—C1—C2109.0 (2)C11—C10—C15117.6 (2)
O1—C2—C1104.4 (2)C11—C10—C5121.7 (2)
O1—C2—H2A110.9C15—C10—C5120.7 (2)
C1—C2—H2A110.9C12—C11—C10121.4 (2)
O1—C2—H2B110.9C12—C11—H11119.3
C1—C2—H2B110.9C10—C11—H11119.3
H2A—C2—H2B108.9C11—C12—C13120.2 (2)
O2—C3—O1120.0 (2)C11—C12—H12119.9
O2—C3—C4131.4 (2)C13—C12—H12119.9
O1—C3—C4108.6 (2)O4—C13—C12125.1 (2)
C1—C4—C5121.5 (2)O4—C13—C14115.6 (2)
C1—C4—C3107.3 (2)C12—C13—C14119.3 (2)
C5—C4—C3131.0 (2)C15—C14—C13119.8 (2)
C4—C5—C6112.3 (2)C15—C14—H14120.1
C4—C5—C10124.6 (2)C13—C14—H14120.1
C6—C5—C10123.1 (2)C14—C15—C10121.7 (2)
C7—C6—C5119.5 (3)C14—C15—H15119.2
C7—C6—C8103.5 (2)C10—C15—H15119.2
C5—C6—C8136.9 (3)O4—C16—H16A109.5
N1—C7—O3120.7 (3)O4—C16—H16B109.5
N1—C7—C6129.1 (3)H16A—C16—H16B109.5
O3—C7—C6110.2 (3)O4—C16—H16C109.5
N2—C8—C6111.0 (2)H16A—C16—H16C109.5
N2—C8—C9118.6 (3)H16B—C16—H16C109.5
C8—N2—O3—C70.6 (3)N2—O3—C7—C6−1.7 (3)
C7—N1—C1—C40.6 (4)C5—C6—C7—N11.1 (4)
C7—N1—C1—C2−177.6 (2)C8—C6—C7—N1−176.1 (3)
C3—O1—C2—C11.0 (3)C5—C6—C7—O3179.2 (2)
N1—C1—C2—O1176.8 (2)C8—C6—C7—O32.0 (3)
C4—C1—C2—O1−1.6 (3)O3—N2—C8—C60.7 (3)
C2—O1—C3—O2−179.5 (2)O3—N2—C8—C9−176.8 (2)
C2—O1—C3—C40.0 (3)C7—C6—C8—N2−1.7 (3)
N1—C1—C4—C5−1.1 (4)C5—C6—C8—N2−178.1 (3)
C2—C1—C4—C5177.3 (2)C7—C6—C8—C9175.4 (3)
N1—C1—C4—C3−176.8 (3)C5—C6—C8—C9−1.0 (5)
C2—C1—C4—C31.7 (3)C4—C5—C10—C11−53.8 (4)
O2—C3—C4—C1178.3 (3)C6—C5—C10—C11127.3 (3)
O1—C3—C4—C1−1.1 (3)C4—C5—C10—C15126.5 (3)
O2—C3—C4—C53.2 (5)C6—C5—C10—C15−52.4 (4)
O1—C3—C4—C5−176.1 (2)C15—C10—C11—C121.0 (4)
C1—C4—C5—C61.4 (3)C5—C10—C11—C12−178.7 (2)
C3—C4—C5—C6175.9 (3)C10—C11—C12—C13−0.7 (4)
C1—C4—C5—C10−177.6 (2)C16—O4—C13—C121.1 (4)
C3—C4—C5—C10−3.1 (4)C16—O4—C13—C14−179.0 (2)
C4—C5—C6—C7−1.4 (3)C11—C12—C13—O4179.5 (2)
C10—C5—C6—C7177.7 (2)C11—C12—C13—C14−0.4 (4)
C4—C5—C6—C8174.6 (3)O4—C13—C14—C15−178.8 (2)
C10—C5—C6—C8−6.4 (5)C12—C13—C14—C151.1 (4)
C1—N1—C7—O3−178.5 (2)C13—C14—C15—C10−0.8 (4)
C1—N1—C7—C6−0.6 (4)C11—C10—C15—C14−0.3 (4)
N2—O3—C7—N1176.5 (2)C5—C10—C15—C14179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.393.215 (3)143

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2664).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem.40, 1143–1148. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Pinho, E. M. & Teresa, M. V. D. (2005). Curr. Org. Chem 9, 925–958.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shin, K. D., Lee, M. Y., Shin, D. S., Lee, S., Son, K. H., Koh, S., Paik, Y. K., Kwon, B. M. & Han, D. C. (2005). J. Biol. Chem 280, 41439–41448. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tatee, T., Narita, K., Kurashige, S., Ito, S., Miyazaki, H., Yamanaka, H., Mizugaki, M., Sakamoto, T. & Fukuda, H. (1987). Chem. Pharm. Bull.35, 3676–3690. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography