PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1048.
Published online 2009 April 18. doi:  10.1107/S1600536809013300
PMCID: PMC2977730

Tetra­ethyl­ammonium 12-phenyl­ethynylcarba-closo-dodeca­borate, [Et4N][12-PhCC-closo-CB11H11]

Abstract

The asymmetric unit of the title compound, C8H20N+·C9H16B11 or [Et4N][12-PhCC-closo-CB11H11], consists of one cation and one anion. The [12-PhCC-closo-CB11H11] anion is close to possessing a non-crystallographic plane of mirror symmetry with a nearly linear B—C C—C group, with B—C C and C C—C angles of 177.15 (16) and 176.64 (17)°, respectively.

Related literature

Carba-closo-dodeca­borate anions with functional groups are potential building blocks for a variety of applications, for example ionic liquids and liquid crystals, see: Körbe et al. (2006 [triangle]). Recently, we have shown that {closo-CB11} clusters with one or two alkynyl groups bonded to boron are accessible by Pd-catalysed Kumada-type cross-coupling reactions starting from the corresponding mono- and diiodinated clusters, see: Finze (2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1048-scheme1.jpg

Experimental

Crystal data

  • C8H20N+·C9H16B11
  • M r = 373.38
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1048-efi1.jpg
  • a = 8.8201 (6) Å
  • b = 12.0929 (11) Å
  • c = 12.1858 (11) Å
  • α = 81.032 (7)°
  • β = 79.899 (7)°
  • γ = 71.553 (7)°
  • V = 1206.82 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.05 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Stoe Stadi CCD diffractometer
  • Absorption correction: none
  • 17081 measured reflections
  • 4219 independent reflections
  • 3228 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.101
  • S = 1.00
  • 4219 reflections
  • 363 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Kuma, 2000 [triangle]); cell refinement: CrysAlis RED (Kuma, 2000 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013300/br2103sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013300/br2103Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.

supplementary crystallographic information

Comment

Carba-closo-dodecaborate anions with functional groups are potential building blocks for a variety of applications, for example ionic liquids and liquid crystals (Körbe, 2006). Recently, we have shown that {closo-CB11} clusters with one or two alkynyl groups bonded to boron are accessible by Pd-catalyzed Kumada-type cross-coupling reactions starting from the corresponding mono- and diiodinated clusters, respectively (Finze, 2008, 2009). The title compound [Et4N][12-PhCC-closo-CB11H11] crystallizes in the triclinic centrosymmetric space group P1 with one formula unit in the asymmetric unit. The bond lengths and angles in the [12-PhCC-closo-CB11H11]- anion in its [Et4N]+ salt are close to the values reported for the respective Cs+ salt (Finze, 2008). However, the quality of the data for the [Et4N]+ salt described herein is significantly better than the quality of the data obtained for the Cs+ salt. The thermal properties of [Et4N][12-PhCC-closo-CB11H11] were studied by differential scanning calorimetry (DSC). The salt melts at 433 K and is thermally stable up to 518 K.

Experimental

[Et4N][12-PhCC-closo-CB11H11] was synthesized according to a published procedure (Finze, 2008). The spectroscopic data have been reported earlier (Finze, 2008). The salt was dissolved in acetonitrile and slow evaporation of the solvent resulted in colorless crystals.

Refinement

All hydrogen atom positions were obtained from difference fourier maps. The hydrogen atoms of the methyl groups were included in the latest stages of the refinement with a riding model and for each methyl group a common Uiso value was refined. The positional parameters and the isotropic displacement parameters of all other hydrogen atoms were refined freely.

Figures

Fig. 1.
: The 12-phenylethinylcarba-closo-dodecaborate cation in [Et4N][12-PhCC-closo-CB11H11]. Hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 40% probability level.
Fig. 2.
: The tetraethylammonium cation in [Et4N][12-PhCC-closo-CB11H11]. Hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 40% probability level.

Crystal data

C8H20N+·C9H16B11Z = 2
Mr = 373.38F(000) = 400
Triclinic, P1Dx = 1.031 Mg m3
Hall symbol: -P 1Melting point: 433 K
a = 8.8201 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0929 (11) ÅCell parameters from 4623 reflections
c = 12.1858 (11) Åθ = 6.8–20.7°
α = 81.032 (7)°µ = 0.05 mm1
β = 79.899 (7)°T = 293 K
γ = 71.553 (7)°Block, colourless
V = 1206.82 (18) Å30.3 × 0.25 × 0.2 mm

Data collection

Stoe Stadi CCD diffractometer3228 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
graphiteθmax = 25.0°, θmin = 5.1°
ω scansh = −10→10
17081 measured reflectionsk = −14→14
4219 independent reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101w = 1/[σ2(Fo2) + (0.01P)2 + 0.45P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4219 reflectionsΔρmax = 0.16 e Å3
363 parametersΔρmin = −0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.02767 (14)0.15270 (10)0.23820 (10)0.0443 (3)
C110.1693 (2)0.11482 (16)0.30484 (17)0.0572 (4)
H11A0.145 (2)0.1795 (17)0.3523 (15)0.075 (6)*
H11B0.264 (2)0.1153 (15)0.2471 (15)0.067 (5)*
C120.1927 (2)−0.00116 (17)0.37487 (17)0.0756 (6)
H12A0.09810.00090.42820.115 (5)*
H12B0.2842−0.01700.41390.115 (5)*
H12C0.2110−0.06170.32740.115 (5)*
C130.0403 (3)0.06144 (18)0.16256 (17)0.0621 (5)
H13A0.034 (2)−0.0082 (16)0.2173 (15)0.071 (5)*
H13B−0.055 (2)0.0949 (16)0.1246 (15)0.074 (6)*
C140.1930 (3)0.0312 (2)0.08048 (18)0.0937 (7)
H14A0.1895−0.02620.03550.149 (6)*
H14B0.28440.00010.12080.149 (6)*
H14C0.20240.10050.03290.149 (6)*
C150.0310 (3)0.26924 (16)0.17111 (18)0.0655 (5)
H15A0.021 (2)0.3226 (17)0.2329 (15)0.074 (6)*
H15B0.140 (2)0.2534 (16)0.1284 (16)0.075 (6)*
C16−0.0984 (3)0.32222 (19)0.09677 (17)0.0891 (7)
H16A−0.08970.26910.04340.126 (5)*
H16B−0.08610.39480.05770.126 (5)*
H16C−0.20230.33660.14160.126 (5)*
C17−0.12997 (19)0.16523 (15)0.31589 (15)0.0494 (4)
H17A−0.119 (2)0.0852 (16)0.3536 (14)0.062 (5)*
H17B−0.207 (2)0.1839 (14)0.2658 (14)0.060 (5)*
C18−0.1717 (2)0.25361 (16)0.39823 (15)0.0660 (5)
H18A−0.18610.33050.35860.101 (4)*
H18B−0.08600.23610.44300.101 (4)*
H18C−0.26970.25090.44590.101 (4)*
C10.8578 (2)−0.42097 (13)0.37589 (14)0.0537 (4)
H10.905 (2)−0.5044 (15)0.4091 (13)0.064 (5)*
B20.7262 (3)−0.39328 (16)0.28148 (17)0.0561 (5)
H20.6959 (19)−0.4675 (14)0.2554 (13)0.064 (5)*
B30.9243 (2)−0.38352 (16)0.23998 (17)0.0555 (5)
H31.012 (2)−0.4499 (15)0.1888 (13)0.065 (5)*
B40.9825 (2)−0.33524 (16)0.35199 (17)0.0535 (5)
H41.108 (2)−0.3739 (14)0.3728 (13)0.064 (5)*
B50.8195 (2)−0.31531 (15)0.46186 (16)0.0516 (5)
H50.8448 (19)−0.3415 (14)0.5490 (14)0.062 (5)*
B60.6607 (2)−0.35139 (16)0.41916 (17)0.0560 (5)
H60.588 (2)−0.3994 (14)0.4814 (13)0.065 (5)*
B70.7589 (2)−0.27118 (15)0.19136 (16)0.0503 (4)
H70.7377 (18)−0.2580 (13)0.1044 (13)0.057 (4)*
B80.5950 (2)−0.25187 (16)0.30200 (17)0.0523 (5)
H80.465 (2)−0.2256 (14)0.2866 (13)0.067 (5)*
B90.6529 (2)−0.20266 (15)0.41506 (16)0.0496 (4)
H90.5641 (19)−0.1430 (14)0.4736 (13)0.057 (4)*
B100.8521 (2)−0.19299 (14)0.37266 (15)0.0463 (4)
H100.8952 (18)−0.1288 (13)0.4032 (12)0.054 (4)*
B110.9180 (2)−0.23517 (15)0.23469 (16)0.0486 (4)
H111.002 (2)−0.1994 (14)0.1743 (13)0.063 (5)*
B120.7131 (2)−0.15303 (14)0.27349 (14)0.0436 (4)
C20.64183 (18)−0.02308 (13)0.22826 (12)0.0467 (4)
C30.58462 (17)0.07904 (13)0.19784 (12)0.0446 (4)
C40.51356 (16)0.20251 (12)0.16824 (12)0.0420 (3)
C50.46196 (19)0.27790 (14)0.25139 (15)0.0503 (4)
H5A0.4757 (19)0.2488 (14)0.3277 (14)0.059 (5)*
C60.3917 (2)0.39677 (15)0.22449 (18)0.0633 (5)
H6A0.357 (2)0.4489 (17)0.2854 (16)0.078 (6)*
C70.3720 (2)0.44060 (16)0.11525 (18)0.0662 (5)
H7A0.318 (2)0.5237 (19)0.0958 (16)0.089 (6)*
C80.4210 (2)0.36716 (16)0.03291 (18)0.0647 (5)
H8A0.408 (2)0.3951 (16)−0.0451 (16)0.074 (5)*
C90.4921 (2)0.24830 (15)0.05830 (15)0.0536 (4)
H9A0.530 (2)0.1947 (15)−0.0011 (14)0.062 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0430 (7)0.0412 (7)0.0525 (7)−0.0178 (6)−0.0068 (6)−0.0043 (5)
C110.0394 (9)0.0633 (11)0.0709 (12)−0.0172 (8)−0.0107 (9)−0.0057 (9)
C120.0600 (12)0.0723 (13)0.0766 (13)0.0020 (10)−0.0135 (10)0.0039 (10)
C130.0695 (13)0.0592 (11)0.0616 (11)−0.0210 (10)−0.0051 (10)−0.0189 (9)
C140.1051 (18)0.0901 (16)0.0746 (14)−0.0207 (13)0.0179 (13)−0.0270 (12)
C150.0741 (13)0.0518 (10)0.0705 (12)−0.0272 (10)−0.0061 (11)0.0080 (9)
C160.1112 (18)0.0705 (13)0.0693 (13)−0.0084 (12)−0.0202 (13)0.0107 (10)
C170.0387 (9)0.0518 (10)0.0590 (10)−0.0155 (7)−0.0070 (8)−0.0048 (8)
C180.0640 (12)0.0628 (11)0.0675 (11)−0.0110 (9)−0.0052 (9)−0.0162 (9)
C10.0603 (10)0.0321 (8)0.0662 (10)−0.0067 (7)−0.0200 (8)−0.0001 (7)
B20.0654 (13)0.0385 (9)0.0701 (12)−0.0170 (9)−0.0233 (10)−0.0037 (9)
B30.0587 (12)0.0423 (10)0.0620 (12)−0.0061 (9)−0.0080 (10)−0.0137 (9)
B40.0475 (11)0.0417 (9)0.0684 (12)−0.0036 (8)−0.0184 (9)−0.0056 (8)
B50.0625 (12)0.0394 (9)0.0506 (10)−0.0089 (8)−0.0179 (9)0.0007 (8)
B60.0575 (12)0.0431 (10)0.0645 (12)−0.0158 (9)−0.0070 (10)0.0033 (9)
B70.0608 (12)0.0420 (9)0.0505 (10)−0.0138 (8)−0.0177 (9)−0.0041 (8)
B80.0461 (11)0.0437 (10)0.0675 (12)−0.0125 (8)−0.0165 (9)0.0008 (8)
B90.0509 (11)0.0395 (9)0.0523 (10)−0.0063 (8)−0.0056 (9)−0.0030 (8)
B100.0515 (10)0.0353 (8)0.0540 (10)−0.0106 (8)−0.0171 (8)−0.0035 (7)
B110.0454 (10)0.0439 (9)0.0554 (11)−0.0124 (8)−0.0055 (8)−0.0056 (8)
B120.0453 (10)0.0358 (8)0.0496 (10)−0.0092 (7)−0.0126 (8)−0.0035 (7)
C20.0472 (9)0.0422 (9)0.0512 (9)−0.0130 (7)−0.0127 (7)−0.0004 (7)
C30.0393 (8)0.0413 (8)0.0530 (9)−0.0125 (7)−0.0115 (7)0.0025 (7)
C40.0329 (7)0.0374 (7)0.0552 (9)−0.0127 (6)−0.0097 (6)0.0057 (7)
C50.0447 (9)0.0457 (9)0.0557 (10)−0.0120 (7)−0.0045 (7)0.0034 (7)
C60.0558 (11)0.0453 (9)0.0826 (13)−0.0113 (8)−0.0001 (10)−0.0065 (9)
C70.0557 (11)0.0400 (9)0.0959 (15)−0.0129 (8)−0.0150 (10)0.0160 (10)
C80.0676 (12)0.0563 (11)0.0693 (12)−0.0228 (9)−0.0242 (10)0.0227 (10)
C90.0554 (10)0.0491 (9)0.0581 (10)−0.0189 (8)−0.0156 (8)0.0055 (8)

Geometric parameters (Å, °)

N1—C131.511 (2)B3—H31.106 (17)
N1—C171.5173 (19)B4—B51.767 (3)
N1—C111.519 (2)B4—B101.768 (2)
N1—C151.521 (2)B4—B111.772 (3)
C11—C121.498 (2)B4—H41.112 (17)
C11—H11A0.991 (19)B5—B101.764 (2)
C11—H11B0.996 (19)B5—B91.768 (3)
C12—H12A0.9600B5—B61.771 (3)
C12—H12B0.9600B5—H51.101 (16)
C12—H12C0.9600B6—B81.771 (3)
C13—C141.509 (3)B6—B91.771 (3)
C13—H13A1.000 (19)B6—H61.117 (17)
C13—H13B0.973 (19)B7—B121.773 (2)
C14—H14A0.9600B7—B111.777 (3)
C14—H14B0.9600B7—B81.778 (3)
C14—H14C0.9600B7—H71.087 (15)
C15—C161.501 (3)B8—B121.779 (2)
C15—H15A1.041 (19)B8—B91.791 (3)
C15—H15B0.98 (2)B8—H81.127 (17)
C16—H16A0.9600B9—B101.778 (3)
C16—H16B0.9600B9—B121.782 (3)
C16—H16C0.9600B9—H91.118 (16)
C17—C181.497 (2)B10—B121.777 (2)
C17—H17A0.987 (17)B10—B111.778 (3)
C17—H17B0.942 (17)B10—H101.101 (15)
C18—H18A0.9600B11—B121.785 (3)
C18—H18B0.9600B11—H111.092 (16)
C18—H18C0.9600B12—C21.548 (2)
C1—B51.692 (2)C2—C31.202 (2)
C1—B41.698 (3)C3—C41.4393 (19)
C1—B21.698 (2)C4—C51.389 (2)
C1—B31.699 (3)C4—C91.389 (2)
C1—B61.703 (3)C5—C61.385 (2)
C1—H11.010 (17)C5—H5A0.956 (16)
B2—B81.762 (3)C6—C71.373 (3)
B2—B71.767 (3)C6—H6A0.993 (19)
B2—B31.767 (3)C7—C81.366 (3)
B2—B61.773 (3)C7—H7A0.98 (2)
B2—H21.118 (16)C8—C91.383 (2)
B3—B71.767 (3)C8—H8A0.973 (18)
B3—B111.769 (3)C9—H9A0.990 (17)
B3—B41.775 (3)
C13—N1—C17106.34 (12)C3—C2—B12177.15 (16)
C13—N1—C11110.83 (14)C2—C3—C4176.64 (17)
C17—N1—C11110.72 (13)C5—C4—C9118.84 (14)
C13—N1—C15111.48 (14)C5—C4—C3119.59 (14)
C17—N1—C15111.00 (13)C9—C4—C3121.55 (14)
C11—N1—C15106.54 (13)C6—C5—C4120.32 (16)
C12—C11—N1115.71 (14)C7—C6—C5120.04 (19)
C14—C13—N1115.43 (16)C8—C7—C6120.15 (17)
C16—C15—N1115.55 (16)C7—C8—C9120.53 (18)
C18—C17—N1116.43 (13)C8—C9—C4120.11 (18)
C2—C3—C4—C58(3)C5—C6—C7—C80.2 (3)
C2—C3—C4—C9−171 (3)C6—C7—C8—C9−0.5 (3)
C9—C4—C5—C6−0.6 (2)C7—C8—C9—C40.2 (3)
C3—C4—C5—C6−179.29 (14)C5—C4—C9—C80.3 (2)
C4—C5—C6—C70.4 (3)C3—C4—C9—C8178.98 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2103).

References

  • Brandenburg, K. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Finze, M. (2008). Inorg. Chem.47, 11857–11867. [PubMed]
  • Finze, M. (2009). Eur. J. Inorg. Chem. pp. 501–507.
  • Körbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev.106, 5208–5249. [PubMed]
  • Kuma (2000). CrysAlis CCD and CrysAlis RED Kuma Diffraction, Wrocław, Poland.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography