PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1043.
Published online 2009 April 18. doi:  10.1107/S1600536809013002
PMCID: PMC2977726

N-Phenyl­anthranilic anhydride

Abstract

The complete mol­ecule of the title compound, C26H20N2O3, is generated by crystallographic twofold symmetry, with the central O atom lying on the rotation axis. The conformation is stabilized by an intra­molecular N—H(...)O hydrogen bond. The dihedral angle between the inner and outer aromatic ring planes is 61.12 (5)°.

Related literature

For the synthesis, see: Martín et al. (2006 [triangle]); Wiklund et al. (2004 [triangle]). For related structures, see: Duesler et al. (1981 [triangle]); Huelgas et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1043-scheme1.jpg

Experimental

Crystal data

  • C26H20N2O3
  • M r = 408.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1043-efi1.jpg
  • a = 9.090 (3) Å
  • b = 21.056 (6) Å
  • c = 10.623 (3) Å
  • β = 100.594 (3)°
  • V = 1998.5 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 93 K
  • 0.33 × 0.30 × 0.18 mm

Data collection

  • Rigaku Spider diffractometer
  • Absorption correction: none
  • 8102 measured reflections
  • 2275 independent reflections
  • 2000 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.111
  • S = 1.00
  • 2275 reflections
  • 145 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013002/hb2927sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013002/hb2927Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039).

supplementary crystallographic information

Comment

N-Phenylanthranilic acid derivatives display a antipyretic acitivity, its RhI complex is known as a remarkably active hydrogenation catalyst. N-phenyl anthranilic acid anhydride, which is considered as an important reaction intermediate, We here report the crystal structure of the title compound, (I).

Bond lengths and angles in (I) (Fig. 1) are within their normal ranges. In each independent molecule, the arrangement of N—H···O hydrogen bond and the planar (O=C—O) group is almost coplanar with respect to its carrier benzene ring, with dihedral angle of 6.63 (1)°, but the two benzene rings in the diphenylamine units are twisted with a dihedral angle of 61.12 (4)°. The structure is stabilized by an intramolecular hydrogen bond from an H atom of a amido N atom to a carbonyl O atom on the six-membered ring.

Experimental

The title compound was prepared according to the reported procedure of Martín et al. (2006) and Wiklund et al. (2004). Colourless chunks of (I) were obtained by recrystallization from ethyl acetate.

Refinement

The N-bound N atom was located in a difference map and its position and Uiso value were freely refined. The C-bound H atoms were placed in calculated positions with C—H = 0.95 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry code: (i) –x, y, 1/2–y.

Crystal data

C26H20N2O3F(000) = 856
Mr = 408.44Dx = 1.358 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3250 reflections
a = 9.090 (3) Åθ = 3.4–27.5°
b = 21.056 (6) ŵ = 0.09 mm1
c = 10.623 (3) ÅT = 93 K
β = 100.594 (3)°Chunk, colourless
V = 1998.5 (10) Å30.33 × 0.30 × 0.18 mm
Z = 4

Data collection

Rigaku Spider diffractometer2000 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.023
graphiteθmax = 27.5°, θmin = 3.4°
ω scansh = −11→11
8102 measured reflectionsk = −27→27
2275 independent reflectionsl = −10→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0706P)2 + 0.28P] where P = (Fo2 + 2Fc2)/3
2275 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.11910 (9)0.38137 (4)0.34545 (8)0.0229 (2)
O20.00000.29421 (5)0.25000.0225 (3)
N10.41159 (11)0.37188 (5)0.43582 (9)0.0204 (2)
C10.56426 (13)0.43835 (6)0.59357 (11)0.0236 (3)
H10.48450.43990.64010.028*
C20.69505 (14)0.47174 (6)0.63703 (12)0.0275 (3)
H20.70450.49640.71300.033*
C30.81191 (14)0.46930 (6)0.57006 (13)0.0274 (3)
H30.90200.49180.60060.033*
C40.79712 (13)0.43398 (5)0.45834 (12)0.0246 (3)
H40.87710.43240.41210.030*
C50.66575 (13)0.40089 (5)0.41392 (11)0.0215 (3)
H50.65550.37710.33690.026*
C60.54946 (12)0.40262 (5)0.48214 (11)0.0185 (3)
C70.39399 (12)0.30870 (5)0.40566 (10)0.0176 (2)
C80.51448 (12)0.26579 (6)0.43627 (11)0.0207 (3)
H80.60990.28110.47640.025*
C90.49596 (13)0.20234 (6)0.40898 (11)0.0233 (3)
H90.57870.17440.43130.028*
C100.35825 (13)0.17796 (6)0.34912 (11)0.0234 (3)
H100.34690.13390.33050.028*
C110.23933 (13)0.21874 (5)0.31759 (11)0.0206 (3)
H110.14530.20250.27630.025*
C120.25345 (12)0.28396 (5)0.34495 (10)0.0179 (3)
C130.12427 (12)0.32625 (5)0.31547 (10)0.0183 (2)
H1N0.3269 (17)0.3947 (7)0.4330 (15)0.039 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0191 (4)0.0209 (4)0.0273 (5)0.0013 (3)0.0006 (3)−0.0033 (3)
O20.0175 (6)0.0198 (6)0.0272 (6)0.000−0.0037 (5)0.000
N10.0157 (5)0.0197 (5)0.0248 (5)0.0012 (4)0.0014 (4)−0.0022 (4)
C10.0231 (6)0.0258 (6)0.0215 (6)0.0022 (5)0.0033 (5)−0.0004 (5)
C20.0299 (7)0.0248 (6)0.0244 (6)0.0003 (5)−0.0037 (5)−0.0046 (5)
C30.0219 (6)0.0198 (6)0.0367 (7)−0.0020 (4)−0.0045 (5)0.0005 (5)
C40.0199 (6)0.0200 (6)0.0340 (7)0.0010 (4)0.0051 (5)0.0036 (5)
C50.0225 (6)0.0199 (6)0.0215 (6)0.0012 (4)0.0027 (5)−0.0015 (4)
C60.0171 (6)0.0170 (5)0.0197 (5)0.0008 (4)−0.0009 (4)0.0014 (4)
C70.0181 (6)0.0189 (5)0.0158 (5)−0.0003 (4)0.0033 (4)0.0015 (4)
C80.0170 (6)0.0234 (6)0.0212 (6)0.0002 (4)0.0019 (4)0.0035 (4)
C90.0218 (6)0.0230 (6)0.0256 (6)0.0058 (4)0.0059 (5)0.0055 (5)
C100.0260 (6)0.0179 (5)0.0268 (6)0.0004 (5)0.0064 (5)0.0007 (5)
C110.0206 (6)0.0210 (6)0.0203 (6)−0.0019 (4)0.0039 (4)0.0002 (4)
C120.0181 (6)0.0202 (6)0.0157 (5)0.0005 (4)0.0037 (4)0.0014 (4)
C130.0173 (6)0.0197 (5)0.0175 (5)−0.0021 (4)0.0023 (4)0.0002 (4)

Geometric parameters (Å, °)

O1—C131.2067 (14)C4—H40.9500
O2—C13i1.3877 (12)C5—C61.3876 (17)
O2—C131.3877 (12)C5—H50.9500
N1—C71.3708 (15)C7—C81.4109 (15)
N1—C61.4159 (14)C7—C121.4199 (15)
N1—H1N0.903 (16)C8—C91.3708 (17)
C1—C21.3853 (18)C8—H80.9500
C1—C61.3880 (16)C9—C101.3936 (17)
C1—H10.9500C9—H90.9500
C2—C31.3838 (19)C10—C111.3728 (16)
C2—H20.9500C10—H100.9500
C3—C41.3860 (18)C11—C121.4047 (15)
C3—H30.9500C11—H110.9500
C4—C51.3881 (16)C12—C131.4610 (15)
C13i—O2—C13121.84 (12)N1—C7—C8121.02 (10)
C7—N1—C6125.64 (9)N1—C7—C12121.25 (10)
C7—N1—H1N116.5 (10)C8—C7—C12117.72 (10)
C6—N1—H1N117.6 (10)C9—C8—C7121.02 (10)
C2—C1—C6120.13 (11)C9—C8—H8119.5
C2—C1—H1119.9C7—C8—H8119.5
C6—C1—H1119.9C8—C9—C10121.37 (11)
C3—C2—C1120.18 (11)C8—C9—H9119.3
C3—C2—H2119.9C10—C9—H9119.3
C1—C2—H2119.9C11—C10—C9118.80 (11)
C2—C3—C4119.82 (11)C11—C10—H10120.6
C2—C3—H3120.1C9—C10—H10120.6
C4—C3—H3120.1C10—C11—C12121.54 (11)
C3—C4—C5120.16 (12)C10—C11—H11119.2
C3—C4—H4119.9C12—C11—H11119.2
C5—C4—H4119.9C11—C12—C7119.53 (10)
C6—C5—C4119.98 (11)C11—C12—C13120.82 (10)
C6—C5—H5120.0C7—C12—C13119.62 (10)
C4—C5—H5120.0O1—C13—O2122.15 (10)
C5—C6—C1119.73 (10)O1—C13—C12126.76 (10)
C5—C6—N1121.13 (10)O2—C13—C12111.05 (10)
C1—C6—N1119.01 (10)
C6—C1—C2—C3−0.43 (18)C8—C9—C10—C11−0.18 (18)
C1—C2—C3—C40.82 (18)C9—C10—C11—C12−0.38 (17)
C2—C3—C4—C5−0.28 (18)C10—C11—C12—C70.54 (17)
C3—C4—C5—C6−0.66 (17)C10—C11—C12—C13−177.48 (11)
C4—C5—C6—C11.05 (16)N1—C7—C12—C11−178.92 (10)
C4—C5—C6—N1176.88 (10)C8—C7—C12—C11−0.14 (16)
C2—C1—C6—C5−0.51 (17)N1—C7—C12—C13−0.87 (16)
C2—C1—C6—N1−176.42 (10)C8—C7—C12—C13177.90 (10)
C7—N1—C6—C556.75 (16)C13i—O2—C13—O118.14 (8)
C7—N1—C6—C1−127.39 (12)C13i—O2—C13—C12−164.03 (10)
C6—N1—C7—C89.20 (17)C11—C12—C13—O1172.29 (11)
C6—N1—C7—C12−172.07 (10)C7—C12—C13—O1−5.73 (18)
N1—C7—C8—C9178.37 (10)C11—C12—C13—O2−5.43 (14)
C12—C7—C8—C9−0.41 (17)C7—C12—C13—O2176.56 (9)
C7—C8—C9—C100.58 (18)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.903 (16)1.966 (15)2.6629 (14)132.7 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2927).

References

  • Duesler, E. N., Kress, R. B., Lin, C. T., Shiau, W. I., Paul, I. C. & Curtin, D. Y. (1981). J. Am. Chem. Soc.103, 875–879.
  • Huelgas, G., Quintero, L., Anaya de Parrodi, C. & Bernès, S. (2006). Acta Cryst. E62, o3191–o3192.
  • Martín, A., Mesa, M., Docampo, M. L., Gómez, V. & Pellón, R. F. (2006). Synth. Commun.36, 271–277.
  • Rigaku/MSC (2004). RAPID-AUTO Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wiklund, P., Evans, M. R. & Bergman, J. (2004). J. Org. Chem.69, 6371–6376. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography