PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1041.
Published online 2009 April 18. doi:  10.1107/S1600536809013075
PMCID: PMC2977724

2,2,2-Trichloro-N-(3,4-dimethyl­phen­yl)acetamide

Abstract

The conformation of the N—H bond in the title compound, C10H10Cl3NO, is anti to the C=O bond. The amide H atom exhibits both intra­molecular N—H(...)Cl and inter­molecular N—H(...)O hydrogen bonding. The latter inter­actions link the mol­ecules into infinite chains.

Related literature

For the preparation of the title compound, see: Shilpa & Gowda (2007 [triangle]). For related structures, see: Gowda et al. (2007 [triangle], 2008 [triangle], 2009 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-o1041-scheme1.jpg

Experimental

Crystal data

  • C10H10Cl3NO
  • M r = 266.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1041-efi1.jpg
  • a = 5.9003 (8) Å
  • b = 20.843 (2) Å
  • c = 9.996 (1) Å
  • β = 105.53 (1)°
  • V = 1184.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.75 mm−1
  • T = 299 K
  • 0.46 × 0.40 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.726, T max = 0.807
  • 9395 measured reflections
  • 2407 independent reflections
  • 1952 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.151
  • S = 1.08
  • 2407 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.96 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013075/bt2926sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013075/bt2926Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2007; 2008; 2009), the structure of 2,2,2-trichloro-N-(3,4-dimethylphenyl)acetamide has been determined. The conformation of the N—H bond in the title compound is anti to the 3-methyl substituent in the aromatic ring similar to that observed with respect to the 3-chloro substituent in N- (3,4-dichlorophenyl)-2,2,2-trichloroacetamide (Gowda et al., 2007), but in contrast to the syn conformation observed with respect to the 3-methyl substituent in N-(3,4-dimethylphenyl)acetamide (Gowda et al., 2008). The conformation of the C=O bond in the structure is anti to the N—H bond similar to that observed in other amides. The amide H atom exhibits both N—H···Cl intramolecular and N—H···O intermolecular hydrogen bonding. The molecules in (I) are linked into infinite chains through intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2).

Experimental

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). Single crystals were obtained from the slow evaporation of an ethanolic solution.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H10Cl3NOF(000) = 544
Mr = 266.54Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3672 reflections
a = 5.9003 (8) Åθ = 2.3–27.6°
b = 20.843 (2) ŵ = 0.75 mm1
c = 9.996 (1) ÅT = 299 K
β = 105.53 (1)°Prism, colourless
V = 1184.4 (2) Å30.46 × 0.40 × 0.30 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2407 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
graphiteRint = 0.015
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)h = −7→7
Tmin = 0.726, Tmax = 0.807k = −25→26
9395 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0592P)2 + 1.4852P] where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = −0.88 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.2122 (2)0.19521 (5)0.59191 (11)0.0833 (4)
Cl21.1512 (2)0.15721 (6)0.31037 (12)0.0939 (5)
Cl30.8043 (2)0.12567 (5)0.45005 (16)0.0919 (4)
O10.8060 (5)0.25550 (12)0.2520 (2)0.0643 (7)
N10.8025 (4)0.28196 (11)0.4703 (2)0.0403 (5)
H1N0.86000.27230.55630.048*
C10.6475 (5)0.33590 (13)0.4375 (3)0.0377 (6)
C20.6550 (5)0.37830 (13)0.3319 (3)0.0399 (6)
H20.76570.37240.28190.048*
C30.4996 (5)0.42941 (13)0.2998 (3)0.0413 (6)
C40.3341 (5)0.43886 (14)0.3749 (3)0.0459 (7)
C50.3325 (6)0.39622 (17)0.4814 (4)0.0552 (8)
H50.22430.40240.53290.066*
C60.4852 (6)0.34532 (15)0.5131 (3)0.0500 (7)
H60.47960.31740.58480.060*
C70.8629 (5)0.24601 (13)0.3758 (3)0.0391 (6)
C81.0067 (5)0.18464 (14)0.4322 (3)0.0440 (7)
C90.5074 (7)0.47305 (17)0.1813 (4)0.0618 (9)
H9A0.63610.46090.14490.074*
H9B0.52850.51660.21380.074*
H9C0.36250.46950.10960.074*
C100.1610 (7)0.49358 (19)0.3417 (4)0.0662 (10)
H10A0.24280.53340.36720.079*
H10B0.04570.48840.39290.079*
H10C0.08430.49370.24410.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0948 (8)0.0602 (6)0.0657 (6)0.0180 (5)−0.0288 (5)−0.0006 (4)
Cl20.1151 (9)0.1008 (9)0.0806 (7)0.0593 (7)0.0517 (7)0.0208 (6)
Cl30.0866 (8)0.0481 (5)0.1423 (11)−0.0182 (5)0.0329 (7)0.0060 (6)
O10.0981 (18)0.0639 (14)0.0272 (10)0.0322 (13)0.0104 (11)−0.0009 (10)
N10.0564 (14)0.0378 (12)0.0244 (10)0.0055 (10)0.0067 (10)0.0019 (9)
C10.0476 (15)0.0331 (13)0.0305 (13)−0.0007 (11)0.0074 (11)−0.0030 (10)
C20.0472 (15)0.0398 (14)0.0344 (14)0.0002 (12)0.0141 (12)0.0006 (11)
C30.0482 (16)0.0346 (14)0.0389 (14)−0.0022 (12)0.0078 (12)0.0003 (11)
C40.0460 (16)0.0386 (15)0.0520 (17)−0.0001 (12)0.0113 (13)−0.0036 (13)
C50.0551 (19)0.0589 (19)0.060 (2)0.0054 (15)0.0295 (16)−0.0003 (16)
C60.0630 (19)0.0491 (17)0.0430 (16)0.0002 (15)0.0230 (14)0.0058 (13)
C70.0475 (15)0.0370 (14)0.0305 (13)0.0016 (12)0.0064 (11)−0.0009 (11)
C80.0501 (17)0.0389 (15)0.0418 (15)0.0020 (12)0.0100 (13)0.0007 (12)
C90.073 (2)0.0528 (19)0.063 (2)0.0143 (17)0.0238 (18)0.0199 (16)
C100.059 (2)0.057 (2)0.084 (3)0.0139 (17)0.0217 (19)0.0043 (19)

Geometric parameters (Å, °)

Cl1—C81.741 (3)C4—C51.389 (5)
Cl2—C81.759 (3)C4—C101.507 (4)
Cl3—C81.755 (3)C5—C61.373 (5)
O1—C71.209 (3)C5—H50.9300
N1—C71.327 (3)C6—H60.9300
N1—C11.431 (3)C7—C81.555 (4)
N1—H1N0.8600C9—H9A0.9600
C1—C61.383 (4)C9—H9B0.9600
C1—C21.387 (4)C9—H9C0.9600
C2—C31.386 (4)C10—H10A0.9600
C2—H20.9300C10—H10B0.9600
C3—C41.395 (4)C10—H10C0.9600
C3—C91.504 (4)
C7—N1—C1123.9 (2)O1—C7—N1125.6 (3)
C7—N1—H1N118.0O1—C7—C8118.7 (2)
C1—N1—H1N118.0N1—C7—C8115.5 (2)
C6—C1—C2119.6 (3)C7—C8—Cl1114.0 (2)
C6—C1—N1118.7 (2)C7—C8—Cl3107.0 (2)
C2—C1—N1121.7 (2)Cl1—C8—Cl3108.74 (17)
C3—C2—C1120.8 (3)C7—C8—Cl2109.6 (2)
C3—C2—H2119.6Cl1—C8—Cl2109.15 (17)
C1—C2—H2119.6Cl3—C8—Cl2108.17 (17)
C2—C3—C4120.0 (3)C3—C9—H9A109.5
C2—C3—C9119.3 (3)C3—C9—H9B109.5
C4—C3—C9120.8 (3)H9A—C9—H9B109.5
C5—C4—C3118.1 (3)C3—C9—H9C109.5
C5—C4—C10120.6 (3)H9A—C9—H9C109.5
C3—C4—C10121.3 (3)H9B—C9—H9C109.5
C6—C5—C4122.2 (3)C4—C10—H10A109.5
C6—C5—H5118.9C4—C10—H10B109.5
C4—C5—H5118.9H10A—C10—H10B109.5
C5—C6—C1119.4 (3)C4—C10—H10C109.5
C5—C6—H6120.3H10A—C10—H10C109.5
C1—C6—H6120.3H10B—C10—H10C109.5
C7—N1—C1—C6140.0 (3)C4—C5—C6—C10.3 (5)
C7—N1—C1—C2−39.4 (4)C2—C1—C6—C50.6 (5)
C6—C1—C2—C3−1.0 (4)N1—C1—C6—C5−178.9 (3)
N1—C1—C2—C3178.5 (3)C1—N1—C7—O13.8 (5)
C1—C2—C3—C40.4 (4)C1—N1—C7—C8−172.3 (2)
C1—C2—C3—C9−177.9 (3)O1—C7—C8—Cl1145.1 (3)
C2—C3—C4—C50.5 (4)N1—C7—C8—Cl1−38.5 (3)
C9—C3—C4—C5178.7 (3)O1—C7—C8—Cl3−94.6 (3)
C2—C3—C4—C10−179.4 (3)N1—C7—C8—Cl381.8 (3)
C9—C3—C4—C10−1.1 (5)O1—C7—C8—Cl222.4 (4)
C3—C4—C5—C6−0.8 (5)N1—C7—C8—Cl2−161.1 (2)
C10—C4—C5—C6179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.142.917 (3)149
N1—H1N···Cl10.862.573.003 (3)112

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2926).

References

  • Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o11. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949. [PMC free article] [PubMed]
  • Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2567–o2568.
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography