PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1039.
Published online 2009 April 18. doi:  10.1107/S1600536809013294
PMCID: PMC2977722

N-(3-Bromo­phen­yl)acetamide

Abstract

The conformation of the N—H bond in the structure of the title compound, C8H8BrNO, is anti to the C=O bond and to the meta-bromo substituent of the aromatic ring in both independent mol­ecules comprising the asymmetric unit. Mol­ecules are linked through N—H(...)O hydrogen bonding into supra­molecular chains with a twisted topology.

Related literature

For the preparation of the compound, see: Gowda et al. (2006 [triangle]). For related structures, see: Gowda et al. (2007 [triangle], 2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1039-scheme1.jpg

Experimental

Crystal data

  • C8H8BrNO
  • M r = 214.06
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1039-efi1.jpg
  • a = 4.7836 (6) Å
  • b = 18.765 (1) Å
  • c = 19.379 (2) Å
  • V = 1739.5 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.67 mm−1
  • T = 299 K
  • 0.44 × 0.10 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.226, T max = 0.685
  • 9612 measured reflections
  • 3449 independent reflections
  • 2043 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.093
  • S = 0.99
  • 3449 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.49 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1366 Friedel pairs
  • Flack parameter: −0.008 (13)

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013294/tk2417sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013294/tk2417Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side-chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2007, 2008, 2009), in the present work, the structure of N-(3-bromophenyl)acetamide (I) has been determined. The conformation of the N—H bond in the structure is anti to the meta-bromo substituent of the aromatic ring (Fig. 1), in both independent molecules comprising the asymmetric unit, similar to that observed in N-(3-chlorophenyl)acetamide (Gowda et al., 2008). Further, the conformation of the C=O bond is anti to the N—H bond. The two independent molecules in (I) are linked through intermolecular N—H···O hydrogen bonding into a supramolecular chains with a twisted topology (Table 1, Fig. 2).

Experimental

Compound (I) was prepared according to the literature method (Gowda et al., 2006). Single crystals were obtained from an ethanolic solution of (I).

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso set to 1.2 times Ueq(parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level. The intermolecular N-H···O hydrogen is shown as a dashed line.
Fig. 2.
Molecular packing of (I) viewed in projection down the a-axis highlighting the supramolecular chains mediated by hydrogen bonding (shown as dashed lines).

Crystal data

C8H8BrNOF(000) = 848
Mr = 214.06Dx = 1.635 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3601 reflections
a = 4.7836 (6) Åθ = 2.4–27.6°
b = 18.765 (1) ŵ = 4.67 mm1
c = 19.379 (2) ÅT = 299 K
V = 1739.5 (3) Å3Long needle, colourless
Z = 80.44 × 0.10 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector3449 independent reflections
Radiation source: fine-focus sealed tube2043 reflections with I > 2σ(I)
graphiteRint = 0.034
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)h = −5→5
Tmin = 0.226, Tmax = 0.685k = −22→23
9612 measured reflectionsl = −20→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.093w = 1/[σ2(Fo2) + (0.0455P)2 + 0.0252P] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3449 reflectionsΔρmax = 0.31 e Å3
201 parametersΔρmin = −0.49 e Å3
0 restraintsAbsolute structure: Flack (1983), 1366 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.008 (13)

Special details

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd. (2007). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.64658 (17)0.36438 (3)0.40336 (3)0.0961 (3)
O11.0611 (8)0.22271 (18)0.20168 (19)0.0786 (12)
N10.9531 (7)0.13129 (19)0.27225 (19)0.0531 (10)
H1N0.97820.08630.27790.064*
C10.7804 (10)0.1647 (2)0.3206 (2)0.0492 (12)
C20.7903 (10)0.2377 (2)0.3338 (2)0.0524 (12)
H20.91110.26700.30920.063*
C30.6192 (12)0.2656 (3)0.3838 (2)0.0606 (14)
C40.4398 (12)0.2247 (4)0.4216 (3)0.0740 (17)
H40.32690.24500.45530.089*
C50.4300 (12)0.1519 (3)0.4084 (3)0.0848 (18)
H50.30680.12340.43310.102*
C60.6000 (11)0.1215 (3)0.3592 (3)0.0691 (15)
H60.59510.07260.35160.083*
C71.0850 (10)0.1608 (3)0.2180 (2)0.0546 (13)
C81.2664 (11)0.1102 (2)0.1767 (2)0.0726 (17)
H8A1.22400.06200.18950.087*
H8B1.45970.11990.18610.087*
H8C1.23030.11660.12840.087*
Br20.30944 (16)0.49664 (3)−0.03009 (3)0.0919 (3)
O20.9050 (8)0.48750 (17)0.18809 (18)0.0709 (10)
N20.8933 (8)0.36972 (18)0.16644 (18)0.0475 (9)
H2N0.96340.32940.17850.057*
C90.6865 (9)0.3675 (2)0.11456 (19)0.0397 (10)
C100.6162 (10)0.4252 (2)0.0737 (2)0.0464 (11)
H100.70390.46900.07990.056*
C110.4147 (10)0.4168 (2)0.0239 (2)0.0499 (12)
C120.2819 (9)0.3533 (3)0.0127 (2)0.0528 (12)
H120.14760.3489−0.02180.063*
C130.3519 (12)0.2959 (3)0.0536 (2)0.0576 (13)
H130.26190.25250.04730.069*
C140.5532 (9)0.3025 (2)0.1035 (2)0.0490 (12)
H140.60130.26320.13020.059*
C150.9939 (9)0.4277 (3)0.1993 (2)0.0490 (12)
C161.2135 (10)0.4133 (3)0.2521 (3)0.0652 (14)
H16A1.26630.36400.25020.078*
H16B1.14160.42420.29710.078*
H16C1.37390.44260.24290.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1400 (6)0.0715 (4)0.0768 (4)0.0319 (4)−0.0121 (4)−0.0259 (3)
O10.110 (3)0.046 (2)0.080 (2)0.013 (2)0.022 (2)0.0251 (19)
N10.067 (3)0.035 (2)0.057 (2)0.0055 (19)0.003 (2)0.012 (2)
C10.058 (3)0.045 (3)0.044 (3)0.005 (2)−0.005 (2)0.006 (2)
C20.065 (3)0.045 (3)0.047 (2)0.004 (2)−0.003 (3)0.003 (2)
C30.075 (4)0.064 (3)0.043 (3)0.021 (3)−0.007 (3)−0.006 (3)
C40.068 (4)0.108 (5)0.046 (3)0.021 (3)0.008 (3)−0.009 (3)
C50.089 (5)0.096 (5)0.070 (4)−0.020 (3)0.014 (4)0.002 (4)
C60.083 (4)0.059 (3)0.065 (3)−0.009 (3)0.003 (3)0.009 (3)
C70.067 (4)0.045 (3)0.052 (3)0.007 (2)0.002 (3)0.008 (2)
C80.086 (5)0.065 (3)0.066 (3)0.005 (3)0.012 (3)0.002 (3)
Br20.1222 (5)0.0670 (4)0.0866 (4)0.0074 (4)−0.0273 (4)0.0277 (3)
O20.091 (3)0.0351 (18)0.086 (2)0.0039 (19)−0.014 (2)−0.0108 (17)
N20.058 (3)0.0299 (19)0.054 (2)0.0034 (19)0.000 (2)0.0001 (18)
C90.044 (3)0.035 (2)0.040 (2)0.000 (2)0.004 (2)−0.003 (2)
C100.051 (3)0.035 (2)0.053 (3)−0.002 (2)−0.001 (3)0.005 (2)
C110.059 (3)0.044 (3)0.047 (3)0.008 (2)0.003 (3)0.007 (2)
C120.048 (3)0.058 (3)0.052 (3)−0.002 (2)−0.003 (2)−0.006 (2)
C130.056 (3)0.051 (3)0.066 (3)−0.002 (3)−0.007 (3)−0.011 (3)
C140.053 (3)0.035 (3)0.058 (3)0.000 (2)0.006 (3)−0.002 (2)
C150.050 (3)0.047 (3)0.050 (3)−0.001 (3)−0.001 (3)−0.007 (3)
C160.065 (4)0.062 (3)0.069 (3)−0.009 (3)−0.007 (3)−0.012 (3)

Geometric parameters (Å, °)

Br1—C31.897 (5)Br2—C111.895 (4)
O1—C71.209 (5)O2—C151.220 (5)
N1—C71.346 (5)N2—C151.349 (5)
N1—C11.398 (5)N2—C91.411 (5)
N1—H1N0.8600N2—H2N0.8600
C1—C21.394 (6)C9—C101.383 (5)
C1—C61.400 (6)C9—C141.392 (6)
C2—C31.372 (6)C10—C111.374 (6)
C2—H20.9300C10—H100.9300
C3—C41.364 (7)C11—C121.369 (6)
C4—C51.390 (7)C12—C131.377 (6)
C4—H40.9300C12—H120.9300
C5—C61.377 (7)C13—C141.371 (6)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.514 (6)C15—C161.490 (6)
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C7—N1—C1128.1 (4)C15—N2—C9127.6 (4)
C7—N1—H1N116.0C15—N2—H2N116.2
C1—N1—H1N116.0C9—N2—H2N116.2
C2—C1—N1123.0 (4)C10—C9—C14119.1 (4)
C2—C1—C6119.5 (5)C10—C9—N2123.7 (4)
N1—C1—C6117.5 (4)C14—C9—N2117.2 (4)
C3—C2—C1119.0 (5)C11—C10—C9118.9 (4)
C3—C2—H2120.5C11—C10—H10120.5
C1—C2—H2120.5C9—C10—H10120.5
C4—C3—C2122.7 (5)C12—C11—C10122.5 (4)
C4—C3—Br1119.1 (4)C12—C11—Br2118.5 (4)
C2—C3—Br1118.2 (4)C10—C11—Br2119.0 (3)
C3—C4—C5118.3 (5)C11—C12—C13118.4 (4)
C3—C4—H4120.8C11—C12—H12120.8
C5—C4—H4120.8C13—C12—H12120.8
C6—C5—C4121.0 (5)C14—C13—C12120.4 (4)
C6—C5—H5119.5C14—C13—H13119.8
C4—C5—H5119.5C12—C13—H13119.8
C5—C6—C1119.6 (5)C13—C14—C9120.6 (4)
C5—C6—H6120.2C13—C14—H14119.7
C1—C6—H6120.2C9—C14—H14119.7
O1—C7—N1123.7 (4)O2—C15—N2122.2 (4)
O1—C7—C8121.3 (4)O2—C15—C16122.3 (4)
N1—C7—C8115.0 (4)N2—C15—C16115.5 (4)
C7—C8—H8A109.5C15—C16—H16A109.5
C7—C8—H8B109.5C15—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C7—C8—H8C109.5C15—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C7—N1—C1—C2−22.3 (7)C15—N2—C9—C1021.5 (6)
C7—N1—C1—C6160.8 (4)C15—N2—C9—C14−160.2 (4)
N1—C1—C2—C3−177.9 (4)C14—C9—C10—C110.7 (6)
C6—C1—C2—C3−1.0 (7)N2—C9—C10—C11178.9 (4)
C1—C2—C3—C40.4 (7)C9—C10—C11—C12−0.5 (7)
C1—C2—C3—Br1177.6 (3)C9—C10—C11—Br2178.0 (3)
C2—C3—C4—C5−0.4 (8)C10—C11—C12—C130.7 (7)
Br1—C3—C4—C5−177.6 (4)Br2—C11—C12—C13−177.8 (4)
C3—C4—C5—C61.0 (8)C11—C12—C13—C14−1.1 (7)
C4—C5—C6—C1−1.7 (8)C12—C13—C14—C91.2 (7)
C2—C1—C6—C51.7 (7)C10—C9—C14—C13−1.0 (6)
N1—C1—C6—C5178.7 (4)N2—C9—C14—C13−179.4 (4)
C1—N1—C7—O1−3.1 (8)C9—N2—C15—O22.2 (7)
C1—N1—C7—C8177.9 (4)C9—N2—C15—C16−179.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.052.887 (5)166
N2—H2N···O10.862.102.953 (5)169

Symmetry codes: (i) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2417).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o381. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949. [PMC free article] [PubMed]
  • Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.
  • Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography