PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1038.
Published online 2009 April 18. doi:  10.1107/S1600536809013142
PMCID: PMC2977721

Imidazolium 3-nitro­benzoate

Abstract

In the title compound, C3H5N2 +·C7H4NO4 , the benzene ring forms a dihedral angle of 40.60 (5)° with the imidizolium ring. The nitro­benzoate anion is approximately planar: the benzene ring makes dihedral angles of 3.8 (3) and 3.2 (1)° with the nitro and carboxyl­ate groups, respectively. In the crystal structure, the cations and anions are linked by inter­molecular N—H(...)O hydrogen bonds, forming a zigzag chain along the b axis.

Related literature

For general background to the physical and biological properties of imidazoles, see: Bunnage & Owen (2008 [triangle]); Ganellin & Fkyerat (1996 [triangle]); Weinreb (2007 [triangle]). For related structures of salts of imidazole with carboxylic acid derivatives, see: Mcdonald & Dorrestein (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1038-scheme1.jpg

Experimental

Crystal data

  • C3H5N2 +·C7H4NO4
  • M r = 235.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1038-efi1.jpg
  • a = 12.209 (2) Å
  • b = 12.081 (2) Å
  • c = 7.3216 (15) Å
  • β = 106.38 (3)°
  • V = 1036.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 298 K
  • 0.38 × 0.21 × 0.13 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.956, T max = 0.984
  • 10057 measured reflections
  • 2369 independent reflections
  • 1571 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.108
  • S = 1.02
  • 2369 reflections
  • 163 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: RAPID-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013142/is2403sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013142/is2403Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the SRCICT of Tianjin University.

supplementary crystallographic information

Comment

Imidazole is a commonly utilized substructure within the pharmaceutical industry, as the imidazole ring impart unique physical and biological properties to compounds of interest (Weinreb, 2007; Bunnage & Owen, 2008; Ganellin & Fkyerat, 1996). Synthetic imidazoles are always present in many fungicides and antifungal antiprotozoal, and antihypertensive medications. The crystal structures of salts between nitrobenzoic acids and imidazoles have been analyzed (Mcdonald & Dorrestein, 2001). As an extension study of hydrogen bonding pattern of nitrobenzoic acids and imidazoles herein we report the crystal structure of the title compound, (I).

The structure of the crystal is shown in Fig. 1. The asymmetric unit of the title compund contains one 3-nitrobenzote anion and one imidazolium cation. A proton transfer from the carboxyl group of 3-nitrobenzoic acid to atom N3 of imidazole. The corresponding C8—N3—C9 angle of the imidazole ring is 108.11 (15)°. The dihedral angle between the benzene ring of 3-nitrobenzote and imidazole ring is 40.60 (5)°. And the dihedral angles of the benzene with the nitro and carboxyl groups are 3.8 (3) and 3.2 (1)°, respectively. In the crystal structure, the crystal packing is consolidated by N—H···O intermolecular hydrogen bond.

Experimental

3-Nitrobenzoic acid and imidazole were mixed in water in a 1:1 molar ratio, then the suspension was heated to 343 K. The clear colourless solution obtained was cooled naturally to room temperature. Colourless crystals were obtained. Then the product was taken out from the solvent by tweezers, and dried in the air at room temperature.

Refinement

N-bound H atoms were located in a difference Fourier map and refined freely. Other H atoms are placed in calculated positions (C–H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A packing diagram of (I). Dashed lines show N—H···O hydrogen bonds.

Crystal data

C3H5N2+·C7H4NO4F(000) = 488
Mr = 235.20Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6213 reflections
a = 12.209 (2) Åθ = 3.4–27.5°
b = 12.081 (2) ŵ = 0.12 mm1
c = 7.3216 (15) ÅT = 298 K
β = 106.38 (3)°Block, colourless
V = 1036.1 (3) Å30.38 × 0.21 × 0.13 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer2369 independent reflections
Radiation source: rotating anode1571 reflections with I > 2σ(I)
graphiteRint = 0.051
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −15→14
Tmin = 0.956, Tmax = 0.984k = −15→15
10057 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1735P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2369 reflectionsΔρmax = 0.20 e Å3
163 parametersΔρmin = −0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.25763 (13)0.52628 (15)0.1825 (3)0.0382 (4)
C20.35926 (13)0.45955 (14)0.1673 (2)0.0337 (4)
C30.34637 (15)0.36098 (15)0.0674 (3)0.0409 (4)
H3A0.27330.33480.00820.049*
C40.44008 (17)0.30055 (16)0.0538 (3)0.0470 (5)
H4A0.42940.2345−0.01420.056*
C50.54890 (16)0.33750 (16)0.1401 (3)0.0463 (5)
H5A0.61250.29710.13320.056*
C60.56048 (14)0.43670 (15)0.2374 (2)0.0373 (4)
C70.46907 (13)0.49843 (14)0.2524 (2)0.0352 (4)
H7A0.48040.56520.31830.042*
C80.05956 (14)0.80035 (16)0.3479 (3)0.0417 (4)
H80.10480.86240.34900.050*
C90.00096 (16)0.63117 (17)0.3339 (3)0.0509 (5)
H9−0.00090.55450.32270.061*
C10−0.08242 (16)0.69552 (17)0.3607 (3)0.0485 (5)
H10−0.15280.67210.37190.058*
N10.67578 (12)0.48134 (15)0.3229 (2)0.0460 (4)
H10.160 (2)0.670 (2)0.304 (3)0.084 (8)*
H2−0.0847 (18)0.865 (2)0.384 (3)0.066 (6)*
N2−0.04454 (13)0.80152 (14)0.3686 (2)0.0432 (4)
N30.08885 (12)0.69827 (13)0.3259 (2)0.0423 (4)
O10.16009 (9)0.48714 (11)0.1101 (2)0.0507 (4)
O20.27753 (10)0.61707 (11)0.2665 (2)0.0510 (4)
O30.68555 (10)0.56865 (13)0.4101 (2)0.0574 (4)
O40.75732 (11)0.42975 (14)0.3012 (2)0.0721 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0339 (8)0.0330 (10)0.0495 (11)−0.0009 (7)0.0148 (8)0.0051 (8)
C20.0350 (8)0.0296 (9)0.0380 (9)0.0006 (7)0.0129 (7)0.0043 (7)
C30.0442 (9)0.0352 (10)0.0444 (10)−0.0038 (8)0.0143 (8)0.0009 (8)
C40.0624 (12)0.0311 (10)0.0527 (11)0.0026 (8)0.0246 (10)−0.0023 (9)
C50.0506 (11)0.0402 (11)0.0548 (12)0.0155 (8)0.0256 (9)0.0076 (9)
C60.0340 (8)0.0392 (10)0.0406 (10)0.0064 (7)0.0139 (7)0.0082 (8)
C70.0363 (8)0.0310 (9)0.0411 (9)0.0023 (7)0.0157 (8)0.0010 (7)
N10.0340 (8)0.0561 (11)0.0499 (10)0.0087 (7)0.0152 (7)0.0108 (8)
O10.0309 (6)0.0412 (8)0.0769 (10)−0.0044 (5)0.0100 (6)−0.0008 (7)
O20.0354 (6)0.0370 (8)0.0836 (10)−0.0003 (5)0.0215 (7)−0.0128 (7)
O30.0398 (7)0.0578 (10)0.0742 (10)−0.0063 (6)0.0154 (7)−0.0032 (8)
O40.0378 (7)0.0952 (14)0.0870 (12)0.0218 (8)0.0234 (8)−0.0012 (10)
C80.0346 (9)0.0400 (11)0.0514 (11)−0.0031 (7)0.0137 (8)−0.0015 (9)
C90.0518 (11)0.0373 (11)0.0667 (13)−0.0075 (9)0.0221 (10)−0.0067 (10)
C100.0375 (9)0.0534 (13)0.0583 (12)−0.0082 (8)0.0194 (9)−0.0060 (10)
N20.0373 (8)0.0435 (10)0.0500 (9)0.0054 (7)0.0144 (7)−0.0031 (7)
N30.0352 (8)0.0413 (9)0.0523 (9)0.0039 (7)0.0153 (7)−0.0048 (7)

Geometric parameters (Å, °)

C8—N31.307 (2)C2—C31.383 (2)
C8—N21.322 (2)C2—C71.391 (2)
C8—H80.9300C3—C41.384 (3)
C9—C101.339 (3)C3—H3A0.9300
C9—N31.359 (2)C4—C51.375 (3)
C9—H90.9300C4—H4A0.9300
C10—N21.357 (2)C5—C61.381 (2)
C10—H100.9300C5—H5A0.9300
N2—H20.94 (2)C6—C71.372 (2)
N3—H10.99 (2)C6—N11.472 (2)
C1—O21.247 (2)C7—H7A0.9300
C1—O11.252 (2)N1—O31.221 (2)
C1—C21.510 (2)N1—O41.2223 (19)
N3—C8—N2109.25 (16)C7—C2—C1119.68 (15)
N3—C8—H8125.4C2—C3—C4121.27 (17)
N2—C8—H8125.4C2—C3—H3A119.4
C10—C9—N3107.59 (17)C4—C3—H3A119.4
C10—C9—H9126.2C5—C4—C3120.45 (18)
N3—C9—H9126.2C5—C4—H4A119.8
C9—C10—N2106.85 (16)C3—C4—H4A119.8
C9—C10—H10126.6C4—C5—C6117.64 (16)
N2—C10—H10126.6C4—C5—H5A121.2
C8—N2—C10108.20 (16)C6—C5—H5A121.2
C8—N2—H2125.1 (14)C7—C6—C5123.07 (17)
C10—N2—H2126.7 (14)C7—C6—N1117.95 (16)
C8—N3—C9108.11 (15)C5—C6—N1118.93 (15)
C8—N3—H1128.8 (14)C6—C7—C2118.93 (16)
C9—N3—H1123.1 (14)C6—C7—H7A120.5
O2—C1—O1124.82 (16)C2—C7—H7A120.5
O2—C1—C2117.12 (14)O3—N1—O4123.05 (17)
O1—C1—C2118.06 (16)O3—N1—C6118.65 (14)
C3—C2—C7118.62 (15)O4—N1—C6118.29 (17)
C3—C2—C1121.69 (15)
N3—C9—C10—N20.1 (2)C3—C4—C5—C6−0.8 (3)
N3—C8—N2—C100.5 (2)C4—C5—C6—C70.5 (3)
C9—C10—N2—C8−0.4 (2)C4—C5—C6—N1−176.88 (16)
N2—C8—N3—C9−0.4 (2)C5—C6—C7—C20.5 (3)
C10—C9—N3—C80.2 (2)N1—C6—C7—C2177.96 (14)
O2—C1—C2—C3−176.11 (16)C3—C2—C7—C6−1.3 (2)
O1—C1—C2—C33.7 (3)C1—C2—C7—C6179.92 (15)
O2—C1—C2—C72.6 (2)C7—C6—N1—O33.0 (2)
O1—C1—C2—C7−177.59 (16)C5—C6—N1—O3−179.45 (16)
C7—C2—C3—C41.0 (3)C7—C6—N1—O4−176.07 (16)
C1—C2—C3—C4179.79 (16)C5—C6—N1—O41.5 (2)
C2—C3—C4—C50.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H1···O20.99 (2)1.66 (2)2.6502 (18)177 (2)
N2—H2···O1i0.94 (2)1.74 (2)2.677 (2)175 (2)

Symmetry codes: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2403).

References

  • Bunnage, M. E. & Owen, D. R. (2008). Curr. Opin. Drug Discov. Dev.11, 480–486. [PubMed]
  • Ganellin, C. R. & Fkyerat, A. (1996). J. Med. Chem.39, 3806–3813. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Mcdonald, J. C. & Dorrestein, P. C. (2001). Cryst. Growth Des.1, 29–38.
  • Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weinreb, S. M. (2007). Nat. Prod. Rep.24, 931–948. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography