PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1033.
Published online 2009 April 10. doi:  10.1107/S1600536809012914
PMCID: PMC2977716

Methyl 1-methyl-3-phenyl-1,2,3,3a,4,9b-hexa­hydro­benzo[f]chromeno[4,3-b]pyrrole-3a-carboxyl­ate

Abstract

In the title compound, C24H23NO3, the dihedral angle between the naphthalene ring system and the phenyl ring is 76.82 (6)°. The pyrrolidine ring adopts an envelope conformation. In the crystal, weak inter­molecular C—H(...)O and C—H(...)π inter­actions are observed.

Related literature

For the biological activity of chromenopyrrole, see: Caine (1993 [triangle]); Tidey (1992 [triangle]); Carlson (1993 [triangle]); Sokoloff et al. (1990 [triangle]); Wilner (1985 [triangle]); Sobral & Rocha Gonsalves (2001a [triangle],b [triangle]); Brockmann & Tour (1995 [triangle]); Suslick et al. (1992 [triangle]); Di Natale et al. (1998 [triangle]). For a related structure, see: Nirmala et al. (2008 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1033-scheme1.jpg

Experimental

Crystal data

  • C24H23NO3
  • M r = 373.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1033-efi1.jpg
  • a = 13.2332 (6) Å
  • b = 10.3574 (4) Å
  • c = 15.0865 (6) Å
  • β = 111.530 (2)°
  • V = 1923.50 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa APEX2 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.979, T max = 0.987
  • 19089 measured reflections
  • 3499 independent reflections
  • 2413 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.107
  • S = 1.02
  • 3499 reflections
  • 255 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012914/is2404sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012914/is2404Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author thanks AMET University Management, India, for their kind support.

supplementary crystallographic information

Comment

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), aggressiveness (Tidey, 1992), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrroles are also very useful precursors in porphyrin synthesis (Sobral & Rocha Gonsalves, 2001a,b), and as monomers for polymer chemistry (Brockmann & Tour, 1995), with applications ranging from nonlinear optical materials (Suslick et al., 1992) to electronic noses (Di Natale et al., 1998).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Nirmala et al., 2008). The six-membered heterocyclic ring [C7/O1/C11/C12/C13/C8] of the benzochromenopyrrole moiety adopts a half-chair conformation [O1—C7—C8—C13 = 0.5 (2)° and O1—C11—C12—C13 = -60.09 (17)°]. The sum of bond angles around N1 [332.37 (14)°] indicates the sp3 hybridized state of atom N1 in the molecule. The C16—N1—C13—C12 torsion angle is -173.40 (14)°, which corresponds to an antiperiplanar conformation.

The crystal packing is stabilized by weak intramolecular C—H···O and C—H···N interactions. In addition, the structure is stabilized by weak intermolecular C—H···O and C—H···π (C16—H16C···Cg; Cg is the centroid of ring defined by the atoms C4–C9) interactions (Table 1). The C11—H11A···N1 and C13—H13···O3 interactions each generate an S(5) graph set motif (Bernstein et al., 1995).

Experimental

A mixture of (z)-methyl-5-(1-formylnathalen-2-yl-)-3-phenylpent -2-enoate and sarcosine were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product.

Refinement

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C24H23NO3F(000) = 792
Mr = 373.43Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3865 reflections
a = 13.2332 (6) Åθ = 1.8–25.3°
b = 10.3574 (4) ŵ = 0.09 mm1
c = 15.0865 (6) ÅT = 293 K
β = 111.530 (2)°Block, colourless
V = 1923.50 (14) Å30.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEX2 CCD diffractometer3499 independent reflections
Radiation source: fine-focus sealed tube2413 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 0 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω and [var phi] scansh = −15→15
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −11→12
Tmin = 0.979, Tmax = 0.987l = −18→18
19089 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0458P)2 + 0.3587P] where P = (Fo2 + 2Fc2)/3
3499 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.87620 (10)0.79656 (11)0.16896 (8)0.0560 (3)
O30.64358 (10)1.04425 (13)0.12731 (9)0.0610 (4)
C80.80155 (13)0.91239 (15)0.02018 (11)0.0404 (4)
O20.72839 (11)0.94550 (14)0.26458 (9)0.0684 (4)
C70.83173 (14)0.80090 (16)0.07191 (12)0.0473 (4)
N10.91939 (11)1.10692 (13)0.08087 (9)0.0452 (4)
C130.81799 (13)1.03987 (15)0.07102 (10)0.0388 (4)
H130.75581.09650.03930.047*
C90.74815 (13)0.90220 (16)−0.08105 (12)0.0452 (4)
C110.91380 (14)0.91616 (15)0.21733 (12)0.0483 (4)
H11A0.98270.93870.21240.058*
H11B0.92580.90590.28430.058*
C100.70597 (14)1.00976 (19)−0.14052 (12)0.0508 (4)
H100.71331.0915−0.11340.061*
C40.73409 (15)0.77937 (18)−0.12524 (13)0.0553 (5)
C120.83340 (13)1.02418 (15)0.17618 (10)0.0394 (4)
C230.73092 (14)0.99806 (16)0.19506 (11)0.0439 (4)
C60.81600 (17)0.67864 (17)0.02815 (15)0.0605 (5)
H60.83730.60440.06500.073*
C170.95781 (14)1.15779 (15)0.32102 (11)0.0440 (4)
C150.88052 (14)1.15911 (15)0.21892 (11)0.0448 (4)
H150.81871.21340.21600.054*
C50.76969 (17)0.66982 (19)−0.06782 (15)0.0665 (6)
H50.76130.5889−0.09640.080*
C160.93000 (15)1.15213 (18)−0.00619 (12)0.0555 (5)
H16A0.87331.2130−0.03710.083*
H16B0.92441.0802−0.04790.083*
H16C0.99931.19310.00870.083*
C30.68054 (18)0.7705 (2)−0.22541 (15)0.0715 (6)
H30.67170.6900−0.25460.086*
C221.06811 (15)1.14119 (17)0.34720 (13)0.0580 (5)
H221.09771.12950.30060.070*
C10.65478 (16)0.9971 (2)−0.23651 (13)0.0629 (5)
H10.62801.0699−0.27380.076*
C20.64222 (18)0.8763 (3)−0.27927 (15)0.0753 (6)
H20.60750.8685−0.34490.090*
C140.92485 (17)1.21276 (17)0.14582 (12)0.0580 (5)
H14A0.88111.28500.11170.070*
H14B0.99921.24170.17710.070*
C180.91714 (17)1.17418 (17)0.39259 (12)0.0571 (5)
H180.84281.18550.37650.069*
C190.9842 (2)1.1741 (2)0.48683 (14)0.0760 (7)
H190.95501.18460.53380.091*
C211.13528 (18)1.14174 (19)0.44215 (15)0.0725 (6)
H211.20971.13060.45880.087*
C201.0936 (2)1.1585 (2)0.51178 (15)0.0784 (7)
H201.13921.15940.57560.094*
C240.54215 (16)1.0313 (2)0.14187 (16)0.0749 (6)
H24A0.52980.94210.15180.112*
H24B0.48391.06280.08680.112*
H24C0.54531.08060.19670.112*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0678 (9)0.0358 (7)0.0620 (8)0.0033 (6)0.0211 (6)0.0046 (6)
O30.0449 (7)0.0785 (9)0.0673 (8)0.0114 (7)0.0296 (6)0.0219 (7)
C80.0387 (9)0.0373 (9)0.0525 (10)−0.0033 (7)0.0254 (8)−0.0041 (8)
O20.0685 (9)0.0824 (10)0.0587 (8)−0.0099 (7)0.0284 (7)0.0197 (7)
C70.0473 (11)0.0413 (10)0.0600 (11)−0.0024 (8)0.0278 (9)−0.0016 (8)
N10.0440 (9)0.0439 (8)0.0500 (8)−0.0079 (6)0.0199 (6)0.0019 (6)
C130.0379 (9)0.0367 (9)0.0441 (9)0.0004 (7)0.0180 (7)0.0023 (7)
C90.0407 (10)0.0490 (10)0.0540 (10)−0.0075 (8)0.0270 (8)−0.0092 (8)
C110.0501 (11)0.0396 (10)0.0527 (10)0.0019 (8)0.0159 (8)0.0033 (8)
C100.0472 (10)0.0607 (12)0.0481 (10)−0.0038 (9)0.0217 (8)−0.0073 (9)
C40.0563 (12)0.0537 (12)0.0659 (12)−0.0100 (9)0.0343 (10)−0.0151 (10)
C120.0400 (9)0.0372 (9)0.0411 (8)0.0006 (7)0.0151 (7)0.0032 (7)
C230.0505 (11)0.0385 (9)0.0441 (9)−0.0032 (8)0.0190 (8)−0.0006 (8)
C60.0731 (14)0.0364 (10)0.0847 (14)−0.0042 (9)0.0437 (11)−0.0044 (9)
C170.0488 (11)0.0331 (9)0.0479 (9)−0.0020 (8)0.0150 (8)−0.0029 (7)
C150.0481 (10)0.0374 (9)0.0470 (9)0.0000 (8)0.0151 (8)−0.0005 (7)
C50.0817 (15)0.0477 (12)0.0858 (15)−0.0156 (11)0.0492 (12)−0.0239 (11)
C160.0533 (12)0.0587 (12)0.0626 (11)−0.0069 (9)0.0310 (9)0.0072 (9)
C30.0717 (15)0.0794 (16)0.0716 (14)−0.0169 (12)0.0357 (12)−0.0354 (12)
C220.0532 (12)0.0536 (12)0.0621 (12)−0.0017 (9)0.0151 (9)−0.0105 (9)
C10.0578 (12)0.0812 (15)0.0518 (11)0.0006 (10)0.0225 (9)−0.0056 (10)
C20.0688 (15)0.1018 (19)0.0555 (12)−0.0036 (13)0.0228 (11)−0.0226 (13)
C140.0734 (14)0.0471 (11)0.0495 (10)−0.0171 (9)0.0178 (9)−0.0005 (8)
C180.0661 (13)0.0527 (11)0.0553 (11)−0.0083 (9)0.0255 (10)−0.0086 (9)
C190.104 (2)0.0731 (15)0.0519 (12)−0.0254 (13)0.0300 (13)−0.0113 (10)
C210.0602 (14)0.0545 (13)0.0789 (15)−0.0040 (10)−0.0026 (12)−0.0073 (11)
C200.103 (2)0.0590 (14)0.0502 (12)−0.0214 (13)0.0010 (13)−0.0019 (10)
C240.0524 (13)0.0869 (16)0.1010 (16)0.0095 (11)0.0467 (12)0.0171 (13)

Geometric parameters (Å, °)

O1—C71.3637 (19)C17—C181.382 (2)
O1—C111.4311 (19)C17—C151.504 (2)
O3—C231.320 (2)C15—C141.531 (2)
O3—C241.444 (2)C15—H150.9800
C8—C71.369 (2)C5—H50.9300
C8—C91.432 (2)C16—H16A0.9600
C8—C131.502 (2)C16—H16B0.9600
O2—C231.1931 (18)C16—H16C0.9600
C7—C61.408 (2)C3—C21.347 (3)
N1—C161.449 (2)C3—H30.9300
N1—C141.454 (2)C22—C211.381 (3)
N1—C131.469 (2)C22—H220.9300
C13—C121.532 (2)C1—C21.389 (3)
C13—H130.9800C1—H10.9300
C9—C101.411 (2)C2—H20.9300
C9—C41.417 (2)C14—H14A0.9700
C11—C121.511 (2)C14—H14B0.9700
C11—H11A0.9700C18—C191.372 (3)
C11—H11B0.9700C18—H180.9300
C10—C11.361 (2)C19—C201.364 (3)
C10—H100.9300C19—H190.9300
C4—C51.400 (3)C21—C201.365 (3)
C4—C31.417 (3)C21—H210.9300
C12—C231.509 (2)C20—H200.9300
C12—C151.569 (2)C24—H24A0.9600
C6—C51.352 (3)C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
C17—C221.376 (2)
C7—O1—C11116.82 (12)C14—C15—C12103.10 (12)
C23—O3—C24116.58 (14)C17—C15—H15107.1
C7—C8—C9118.20 (15)C14—C15—H15107.1
C7—C8—C13119.55 (14)C12—C15—H15107.1
C9—C8—C13122.11 (14)C6—C5—C4121.67 (17)
O1—C7—C8124.11 (15)C6—C5—H5119.2
O1—C7—C6113.89 (16)C4—C5—H5119.2
C8—C7—C6121.97 (16)N1—C16—H16A109.5
C16—N1—C14111.70 (13)N1—C16—H16B109.5
C16—N1—C13116.73 (13)H16A—C16—H16B109.5
C14—N1—C13104.01 (13)N1—C16—H16C109.5
N1—C13—C8115.02 (13)H16A—C16—H16C109.5
N1—C13—C12100.13 (12)H16B—C16—H16C109.5
C8—C13—C12112.01 (13)C2—C3—C4121.4 (2)
N1—C13—H13109.8C2—C3—H3119.3
C8—C13—H13109.8C4—C3—H3119.3
C12—C13—H13109.8C17—C22—C21120.56 (19)
C10—C9—C4117.20 (15)C17—C22—H22119.7
C10—C9—C8123.04 (15)C21—C22—H22119.7
C4—C9—C8119.75 (16)C10—C1—C2120.6 (2)
O1—C11—C12111.76 (13)C10—C1—H1119.7
O1—C11—H11A109.3C2—C1—H1119.7
C12—C11—H11A109.3C3—C2—C1119.85 (19)
O1—C11—H11B109.3C3—C2—H2120.1
C12—C11—H11B109.3C1—C2—H2120.1
H11A—C11—H11B107.9N1—C14—C15105.93 (13)
C1—C10—C9121.78 (18)N1—C14—H14A110.6
C1—C10—H10119.1C15—C14—H14A110.6
C9—C10—H10119.1N1—C14—H14B110.6
C5—C4—C9118.71 (17)C15—C14—H14B110.6
C5—C4—C3122.04 (19)H14A—C14—H14B108.7
C9—C4—C3119.19 (19)C19—C18—C17121.3 (2)
C23—C12—C11109.62 (13)C19—C18—H18119.3
C23—C12—C13115.29 (13)C17—C18—H18119.3
C11—C12—C13108.05 (13)C20—C19—C18120.2 (2)
C23—C12—C15109.34 (13)C20—C19—H19119.9
C11—C12—C15112.14 (13)C18—C19—H19119.9
C13—C12—C15102.29 (12)C20—C21—C22120.7 (2)
O2—C23—O3123.16 (16)C20—C21—H21119.7
O2—C23—C12124.39 (16)C22—C21—H21119.7
O3—C23—C12112.40 (13)C19—C20—C21119.35 (19)
C5—C6—C7119.59 (18)C19—C20—H20120.3
C5—C6—H6120.2C21—C20—H20120.3
C7—C6—H6120.2O3—C24—H24A109.5
C22—C17—C18117.86 (16)O3—C24—H24B109.5
C22—C17—C15123.11 (16)H24A—C24—H24B109.5
C18—C17—C15119.03 (16)O3—C24—H24C109.5
C17—C15—C14116.40 (15)H24A—C24—H24C109.5
C17—C15—C12115.53 (13)H24B—C24—H24C109.5
C11—O1—C7—C8−13.5 (2)C13—C12—C23—O2155.96 (16)
C11—O1—C7—C6168.25 (15)C15—C12—C23—O2−89.50 (19)
C9—C8—C7—O1−175.27 (14)C11—C12—C23—O3−148.53 (14)
C13—C8—C7—O10.5 (2)C13—C12—C23—O3−26.37 (19)
C9—C8—C7—C62.8 (2)C15—C12—C23—O388.17 (16)
C13—C8—C7—C6178.56 (16)O1—C7—C6—C5178.20 (16)
C16—N1—C13—C866.33 (19)C8—C7—C6—C5−0.1 (3)
C14—N1—C13—C8−170.14 (13)C22—C17—C15—C14−31.9 (2)
C16—N1—C13—C12−173.44 (13)C18—C17—C15—C14148.01 (16)
C14—N1—C13—C12−49.91 (15)C22—C17—C15—C1289.3 (2)
C7—C8—C13—N194.95 (17)C18—C17—C15—C12−90.82 (19)
C9—C8—C13—N1−89.46 (18)C23—C12—C15—C1788.85 (17)
C7—C8—C13—C12−18.5 (2)C11—C12—C15—C17−32.95 (19)
C9—C8—C13—C12157.09 (14)C13—C12—C15—C17−148.48 (14)
C7—C8—C9—C10174.89 (15)C23—C12—C15—C14−143.05 (14)
C13—C8—C9—C10−0.8 (2)C11—C12—C15—C1495.15 (16)
C7—C8—C9—C4−3.9 (2)C13—C12—C15—C14−20.38 (16)
C13—C8—C9—C4−179.52 (14)C7—C6—C5—C4−1.7 (3)
C7—O1—C11—C1244.22 (19)C9—C4—C5—C60.5 (3)
C4—C9—C10—C1−0.7 (2)C3—C4—C5—C6−176.74 (18)
C8—C9—C10—C1−179.46 (15)C5—C4—C3—C2176.87 (19)
C10—C9—C4—C5−176.58 (16)C9—C4—C3—C2−0.4 (3)
C8—C9—C4—C52.3 (2)C18—C17—C22—C21−0.3 (3)
C10—C9—C4—C30.8 (2)C15—C17—C22—C21179.54 (17)
C8—C9—C4—C3179.63 (15)C9—C10—C1—C20.1 (3)
O1—C11—C12—C2366.29 (17)C4—C3—C2—C1−0.1 (3)
O1—C11—C12—C13−60.09 (17)C10—C1—C2—C30.3 (3)
O1—C11—C12—C15−172.07 (13)C16—N1—C14—C15164.03 (14)
N1—C13—C12—C23160.94 (13)C13—N1—C14—C1537.29 (17)
C8—C13—C12—C23−76.68 (17)C17—C15—C14—N1118.28 (16)
N1—C13—C12—C11−76.07 (15)C12—C15—C14—N1−9.28 (17)
C8—C13—C12—C1146.31 (17)C22—C17—C18—C190.0 (3)
N1—C13—C12—C1542.39 (15)C15—C17—C18—C19−179.84 (17)
C8—C13—C12—C15164.78 (13)C17—C18—C19—C200.5 (3)
C24—O3—C23—O21.5 (3)C17—C22—C21—C200.1 (3)
C24—O3—C23—C12−176.18 (15)C18—C19—C20—C21−0.7 (3)
C11—C12—C23—O233.8 (2)C22—C21—C20—C190.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11A···N10.972.542.874 (2)100
C13—H13···O30.982.392.7366 (19)100
C15—H15···O2i0.982.533.347 (2)141
C16—H16C···Cgii0.962.793.689 (4)156

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2404).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc.117, 4437–4447.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caine, B. (1993). Science, 260, 1814–1816. [PubMed]
  • Carlson, J. (1993). Neur. Transm.94, 11–19. [PubMed]
  • Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., Tarizzo, E. & Amico, A. (1998). Sens. Actuators, B50, 162–168.
  • Nirmala, S., Kamala, E. T. S., Sudha, L., Ramesh, E. & Raghunathan, R. (2008). Acta Cryst. E64, o649. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001a). J. Porphyrins Phthalocyanines, 5, 428–430.
  • Sobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001b). J. Porphyrins Phthalocyanines, 5, 861–866.
  • Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suslick, K. S., Chen, C. T., Meredith, G. R. & Cheng, L. T. (1992). J. Am. Chem. Soc.114, 6928–6930.
  • Tidey, J. W. (1992). Behav. Pharm.3, 553–566. [PubMed]
  • Wilner, P. (1985). Clin. Neuropharm.18, Suppl. 1, 549–556.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography