PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1031.
Published online 2009 April 10. doi:  10.1107/S1600536809013221
PMCID: PMC2977714

4,4,5,5-Tetra­methyl-2-[4-(2-pyrid­yl)phen­yl]-3,4-dihydro­imidazole-1-oxyl-3-oxide

Abstract

In the title compound, C18H20N3O2, the pyridine and phenyl rings are coplanar [dihedral angle = 3.5 (3)°]. The phenyl ring makes a dihedral angle of 29.6 (1)° with the imidazole ring. The crystal structure is stabilized by inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound see: Ullman et al. (1974 [triangle]). For recent synthetic use of the title compound and its derivatives, see: Li et al. (2009 [triangle]); Xu et al. (2008 [triangle]); Masuda et al. (2009 [triangle]); Train et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1031-scheme1.jpg

Experimental

Crystal data

  • C18H20N3O2
  • M r = 310.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1031-efi1.jpg
  • a = 8.5150 (17) Å
  • b = 22.286 (5) Å
  • c = 9.1360 (18) Å
  • β = 109.45 (3)°
  • V = 1634.8 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.983, T max = 0.983
  • 12953 measured reflections
  • 2819 independent reflections
  • 1896 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.146
  • S = 1.09
  • 2819 reflections
  • 212 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: Mercury (Macrae et al., 2006 [triangle]) and CAMERON (Watkin et al., 1996 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013221/bt2927sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013221/bt2927Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

supplementary crystallographic information

Comment

The title radical compound was obtained the oxidation of 4,4,5,5- tetramethyl-2-(4-(pyridin-2-yl)phenyl)imidazolidine-1,3-diol, which was prepared by the condensation of 4-(pyridin-2-yl)benzaldehyde with 2,3-Dimethyl-2,3-bis(hydroxyl-amino)butane. The title compound was used for coordination with many metal cations, such as Mn2+, Cu2+, Ni2+ and Zn2+, in order to form some molecule-based magnetic materials (Train et al., 2009; Masuda et al., 2009).

In the crystal structure of the title compound, the pyridine ring and the phenyl ring are in one same plane, and this aromatic ring system is twisted with respect to the imidazole ring with a dihedral angle of 29.6 (1)°, and the packing of molecules in the crystal structure is stabilized by intermolecular C—H···O hydrogen bonds. In the imidazole ring, the length of N1—O1 is 1.284 (3) Å, while the length of N2—O2 is 1.274 (3) Å.

Experimental

The title compound (I) was prepared according to the method reported by Ullman et al. (1974). 2,3-Dimethyl-2,3-bis(hydroxylamino)butane (1.48 g, 10.0 mmol) and 4-(pyridin-2-yl)benzaldehyde (1.83 g, 10.0 mmol) were dissolved in a methanol solution (20.0 ml), which was stirred for 3 h at room temperature, and then filtered, the cake was washed by methanol (5.0 ml) for twice. This product was dried under vaccum, then, it was suspended in dichloromethane (100.0 ml) and this reaction mixture was cooled at ice bath for 10 min, the water solution (30.0 ml) of NaIO4 (1.7 g,) was added dropwise to the above suspension and stirred for 20 min at this temperature, the organic layer was seperated and the aqueous phase was extracted by dichloromethane (30.0 ml) for twice. The combined organic layer was dried over Na2SO4 and the solvent was removed to give a dark blue residue which was purified by a flash column chromatography (eluent, ether and petroleum ether, the ratio of volume is 4 to 1) to yield the title compound (I) as a dark blue powder. Single crystals of (I) were obtained from the mixed solution of n-heptane and dichloromethane (the ratio of volume is 4 to 1).

Refinement

In both structures all the H atoms were discernible in the difference Fourier maps. However, they were constrained by riding model approximation. C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl and UisoHaryl are 1.5 U eq(C) and 1.2 U eq(C), respectively.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The packing of the title molecules, viewed down the a axis. Dotted lines indicate hydrogen bonds.

Crystal data

C18H20N3O2F(000) = 660
Mr = 310.37Dx = 1.261 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5150 (17) ÅCell parameters from 2819 reflections
b = 22.286 (5) Åθ = 3.0–25.0°
c = 9.1360 (18) ŵ = 0.08 mm1
β = 109.45 (3)°T = 293 K
V = 1634.8 (6) Å3Block, blue
Z = 40.20 × 0.20 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer2819 independent reflections
Radiation source: fine-focus sealed tube1896 reflections with I > 2σ(I)
graphiteRint = 0.063
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −26→26
Tmin = 0.983, Tmax = 0.983l = −10→10
12953 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0512P)2 + 0.5834P] where P = (Fo2 + 2Fc2)/3
2819 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0559 (3)0.57868 (12)0.7773 (3)0.0406 (7)
C20.3900 (3)0.72221 (12)0.7712 (3)0.0370 (6)
C40.3958 (3)0.66754 (12)0.6990 (3)0.0432 (7)
H40.47310.66200.64830.052*
C50.5033 (3)0.77122 (11)0.7688 (3)0.0377 (6)
C60.2755 (3)0.72855 (12)0.8480 (3)0.0469 (7)
H60.26950.76460.89720.056*
C70.1736 (3)0.62798 (11)0.7782 (3)0.0365 (6)
C80.2889 (3)0.62182 (12)0.7019 (3)0.0440 (7)
H80.29390.58590.65160.053*
C90.1706 (3)0.68223 (12)0.8522 (3)0.0482 (8)
H90.09590.68730.90580.058*
C100.7488 (3)0.82333 (12)0.7781 (3)0.0422 (7)
C110.6108 (3)0.86972 (12)0.7722 (3)0.0412 (7)
C12−0.1592 (4)0.48645 (15)0.7597 (4)0.0699 (10)
H12−0.22670.45330.75610.084*
C130.8852 (4)0.81846 (14)0.9347 (4)0.0612 (9)
H13A0.83620.81201.01400.092*
H13B0.94900.85490.95580.092*
H13C0.95690.78540.93330.092*
C140.8263 (4)0.82919 (15)0.6510 (4)0.0671 (10)
H14A0.90770.79810.66280.101*
H14B0.87890.86770.65850.101*
H14C0.74110.82540.55140.101*
C15−0.0669 (5)0.58456 (16)0.8416 (5)0.0849 (13)
H15−0.07730.62010.89080.102*
C160.6523 (4)0.91381 (15)0.9054 (4)0.0726 (11)
H16A0.55760.93900.89450.109*
H16B0.74500.93820.90450.109*
H16C0.68080.89231.00170.109*
C180.5432 (4)0.90355 (16)0.6188 (4)0.0720 (10)
H18A0.51570.87550.53430.108*
H18B0.62620.93100.60940.108*
H18C0.44520.92540.61610.108*
C19−0.0414 (4)0.48541 (14)0.6919 (4)0.0678 (10)
H19−0.03510.45140.63520.081*
C20−0.1762 (6)0.53756 (18)0.8335 (6)0.1057 (16)
H20−0.25950.54100.87790.127*
N10.6539 (3)0.76539 (10)0.7555 (3)0.0437 (6)
N20.4734 (3)0.82976 (10)0.7821 (3)0.0455 (6)
N30.0669 (3)0.52930 (11)0.6995 (3)0.0597 (7)
O10.7257 (3)0.71598 (9)0.7424 (3)0.0689 (7)
O20.3395 (3)0.85231 (9)0.7914 (3)0.0739 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0425 (16)0.0374 (17)0.0416 (17)0.0011 (12)0.0136 (14)0.0010 (13)
C20.0350 (15)0.0354 (16)0.0390 (16)0.0010 (12)0.0101 (13)0.0015 (12)
C40.0427 (16)0.0451 (18)0.0463 (18)−0.0018 (13)0.0209 (14)−0.0052 (13)
C50.0364 (15)0.0377 (17)0.0398 (17)0.0032 (12)0.0139 (13)−0.0007 (12)
C60.0516 (18)0.0376 (17)0.0558 (19)−0.0034 (14)0.0236 (16)−0.0099 (14)
C70.0369 (15)0.0352 (16)0.0352 (16)−0.0006 (11)0.0089 (13)0.0004 (12)
C80.0514 (18)0.0369 (16)0.0439 (18)−0.0014 (14)0.0162 (15)−0.0075 (13)
C90.0455 (17)0.0437 (18)0.063 (2)−0.0035 (13)0.0289 (16)−0.0064 (14)
C100.0409 (16)0.0403 (16)0.0478 (18)−0.0064 (12)0.0180 (14)−0.0031 (13)
C110.0434 (16)0.0317 (15)0.0478 (18)−0.0064 (12)0.0141 (14)−0.0004 (13)
C120.076 (2)0.049 (2)0.096 (3)−0.0207 (18)0.044 (2)−0.0010 (19)
C130.0499 (18)0.063 (2)0.063 (2)−0.0012 (15)0.0082 (17)0.0014 (17)
C140.086 (3)0.065 (2)0.068 (2)−0.0102 (18)0.049 (2)−0.0028 (17)
C150.117 (3)0.056 (2)0.119 (3)−0.034 (2)0.090 (3)−0.033 (2)
C160.059 (2)0.067 (2)0.089 (3)−0.0061 (17)0.021 (2)−0.036 (2)
C180.068 (2)0.067 (2)0.081 (3)0.0073 (18)0.025 (2)0.0286 (19)
C190.065 (2)0.0379 (19)0.106 (3)−0.0094 (16)0.036 (2)−0.0121 (18)
C200.138 (4)0.079 (3)0.147 (4)−0.049 (3)0.110 (4)−0.036 (3)
N10.0433 (14)0.0372 (14)0.0532 (16)−0.0005 (11)0.0194 (12)−0.0037 (11)
N20.0397 (14)0.0350 (14)0.0647 (17)0.0016 (11)0.0212 (12)0.0003 (11)
N30.0569 (17)0.0402 (16)0.090 (2)−0.0082 (12)0.0358 (15)−0.0159 (13)
O10.0569 (14)0.0418 (13)0.121 (2)0.0004 (10)0.0471 (14)−0.0134 (12)
O20.0542 (14)0.0416 (13)0.139 (2)0.0080 (11)0.0504 (14)0.0038 (12)

Geometric parameters (Å, °)

C1—N31.331 (3)C12—C191.343 (4)
C1—C151.365 (4)C12—C201.356 (5)
C1—C71.486 (4)C12—H120.9300
C2—C61.385 (3)C13—H13A0.9600
C2—C41.394 (4)C13—H13B0.9600
C2—C51.463 (4)C13—H13C0.9600
C4—C81.373 (4)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—N11.334 (3)C14—H14C0.9600
C5—N21.343 (3)C15—C201.387 (5)
C6—C91.374 (4)C15—H150.9300
C6—H60.9300C16—H16A0.9600
C7—C81.388 (4)C16—H16B0.9600
C7—C91.389 (4)C16—H16C0.9600
C8—H80.9300C18—H18A0.9600
C9—H90.9300C18—H18B0.9600
C10—N11.501 (3)C18—H18C0.9600
C10—C131.517 (4)C19—N31.331 (4)
C10—C141.520 (4)C19—H190.9300
C10—C111.552 (4)C20—H200.9300
C11—N21.497 (3)N1—O11.284 (3)
C11—C161.512 (4)N2—O21.274 (3)
C11—C181.525 (4)
N3—C1—C15120.7 (3)C10—C13—H13B109.5
N3—C1—C7116.5 (2)H13A—C13—H13B109.5
C15—C1—C7122.6 (3)C10—C13—H13C109.5
C6—C2—C4118.1 (2)H13A—C13—H13C109.5
C6—C2—C5120.7 (2)H13B—C13—H13C109.5
C4—C2—C5121.2 (2)C10—C14—H14A109.5
C8—C4—C2120.8 (3)C10—C14—H14B109.5
C8—C4—H4119.6H14A—C14—H14B109.5
C2—C4—H4119.6C10—C14—H14C109.5
N1—C5—N2108.7 (2)H14A—C14—H14C109.5
N1—C5—C2126.0 (2)H14B—C14—H14C109.5
N2—C5—C2125.3 (2)C1—C15—C20120.1 (3)
C9—C6—C2120.8 (3)C1—C15—H15120.0
C9—C6—H6119.6C20—C15—H15120.0
C2—C6—H6119.6C11—C16—H16A109.5
C8—C7—C9117.5 (2)C11—C16—H16B109.5
C8—C7—C1120.9 (2)H16A—C16—H16B109.5
C9—C7—C1121.6 (2)C11—C16—H16C109.5
C4—C8—C7121.4 (2)H16A—C16—H16C109.5
C4—C8—H8119.3H16B—C16—H16C109.5
C7—C8—H8119.3C11—C18—H18A109.5
C6—C9—C7121.5 (3)C11—C18—H18B109.5
C6—C9—H9119.3H18A—C18—H18B109.5
C7—C9—H9119.3C11—C18—H18C109.5
N1—C10—C13106.1 (2)H18A—C18—H18C109.5
N1—C10—C14108.6 (2)H18B—C18—H18C109.5
C13—C10—C14109.6 (2)N3—C19—C12125.1 (3)
N1—C10—C11101.6 (2)N3—C19—H19117.5
C13—C10—C11114.5 (2)C12—C19—H19117.5
C14—C10—C11115.6 (2)C12—C20—C15118.7 (3)
N2—C11—C16108.4 (2)C12—C20—H20120.7
N2—C11—C18106.6 (2)C15—C20—H20120.7
C16—C11—C18109.5 (3)O1—N1—C5126.4 (2)
N2—C11—C10101.5 (2)O1—N1—C10120.0 (2)
C16—C11—C10115.7 (2)C5—N1—C10113.2 (2)
C18—C11—C10114.3 (2)O2—N2—C5126.2 (2)
C19—C12—C20117.6 (3)O2—N2—C11120.3 (2)
C19—C12—H12121.2C5—N2—C11113.4 (2)
C20—C12—H12121.2C19—N3—C1117.7 (3)
C10—C13—H13A109.5
C6—C2—C4—C81.1 (4)C7—C1—C15—C20178.2 (4)
C5—C2—C4—C8−180.0 (2)C20—C12—C19—N34.3 (6)
C6—C2—C5—N1152.3 (3)C19—C12—C20—C15−3.0 (7)
C4—C2—C5—N1−26.6 (4)C1—C15—C20—C12−0.7 (7)
C6—C2—C5—N2−26.5 (4)N2—C5—N1—O1179.1 (2)
C4—C2—C5—N2154.6 (3)C2—C5—N1—O10.1 (4)
C4—C2—C6—C9−0.1 (4)N2—C5—N1—C106.8 (3)
C5—C2—C6—C9−179.1 (3)C2—C5—N1—C10−172.3 (2)
N3—C1—C7—C8−0.4 (4)C13—C10—N1—O1−65.1 (3)
C15—C1—C7—C8−175.3 (3)C14—C10—N1—O152.6 (3)
N3—C1—C7—C9178.3 (3)C11—C10—N1—O1175.0 (2)
C15—C1—C7—C93.4 (4)C13—C10—N1—C5107.8 (3)
C2—C4—C8—C7−1.0 (4)C14—C10—N1—C5−134.5 (3)
C9—C7—C8—C4−0.2 (4)C11—C10—N1—C5−12.1 (3)
C1—C7—C8—C4178.5 (3)N1—C5—N2—O2177.4 (3)
C2—C6—C9—C7−1.0 (4)C2—C5—N2—O2−3.6 (4)
C8—C7—C9—C61.1 (4)N1—C5—N2—C112.2 (3)
C1—C7—C9—C6−177.5 (3)C2—C5—N2—C11−178.8 (2)
N1—C10—C11—N211.7 (2)C16—C11—N2—O252.8 (3)
C13—C10—C11—N2−102.1 (2)C18—C11—N2—O2−65.0 (3)
C14—C10—C11—N2129.1 (2)C10—C11—N2—O2175.1 (2)
N1—C10—C11—C16128.8 (3)C16—C11—N2—C5−131.6 (3)
C13—C10—C11—C1615.0 (4)C18—C11—N2—C5110.5 (3)
C14—C10—C11—C16−113.7 (3)C10—C11—N2—C5−9.4 (3)
N1—C10—C11—C18−102.6 (3)C12—C19—N3—C1−1.6 (5)
C13—C10—C11—C18143.6 (3)C15—C1—N3—C19−2.5 (5)
C14—C10—C11—C1814.8 (3)C7—C1—N3—C19−177.5 (3)
N3—C1—C15—C203.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.433.322 (4)161

Symmetry codes: (i) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2927).

References

  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, R., Li, L., Xing, X. & Liao, D. (2009). Inorg. Chim. Acta. In the press. doi:10.1016/j.ica.2008.10.017.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Masuda, Y., Kurats, M., Suzuki, S., Kozaki, M., Shiomi, D., Sato, K., Takui, T., Hosokoshi, Y., Lan, X., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc.131, 4670–4673. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Train, C., Norel, L. & Baumgarten, M. (2009). Coord. Chem. Rev. In the press. doi:10.1016/j.ccr.2008.10.004.
  • Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J. Am. Chem. Soc.96, 7049–7053.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  • Xu, J., Ma, Y., Xu, G., Wang, C., Liao, D., Jiang, Z., Yan, S. & Li, L. (2008). Inorg. Chem. Commun.11, 1356–1358.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography