PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1029.
Published online 2009 April 10. doi:  10.1107/S1600536809012951
PMCID: PMC2977712

Ethyl 2-[(4-chloro­phen­yl)hydrazono]-3-oxobutanoate

Abstract

The mol­ecule of the title oxobutanoate derivative, C12H13ClN2O3, is nearly planar; the inter­planar angle between the benzene ring and the mean plane through the hydrazono-3-oxobutanoate unit is 2.69 (3)°. An intra­molecular N—H(...)O hydrogen bond generates an S(6) ring motif. In the crystal packing, C—H(...)O(3-oxo) inter­actions link mol­ecules into dimers. The dimers thus formed are linked through C—H(...)O(carboxyl­ate C=O) inter­actions, leading to the formation of ribbons along the [01An external file that holds a picture, illustration, etc.
Object name is e-65-o1029-efi1.jpg] direction, which are stabilized via Cl(...)Cl [3.2916 (3) Å] contacts. The ribbons are stacked via C(...)O contacts [3.2367 (12)–3.3948 (12) Å].

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]). For background to the bioactivity and applications of oxobutanoate derivatives, see: Alpaslan et al. (2005 [triangle]); Billington et al. (1979 [triangle]); Stancho et al. (2008 [triangle]). For the synthesis, see Amir & Agarwal (1997 [triangle]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1029-scheme1.jpg

Experimental

Crystal data

  • C12H13ClN2O3
  • M r = 268.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1029-efi2.jpg
  • a = 4.0259 (1) Å
  • b = 17.0892 (4) Å
  • c = 18.4934 (5) Å
  • β = 96.802 (1)°
  • V = 1263.38 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 100 K
  • 0.77 × 0.13 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.799, T max = 0.982
  • 38796 measured reflections
  • 4723 independent reflections
  • 3972 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.108
  • S = 1.06
  • 4723 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012951/tk2415sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012951/tk2415Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities. The authors thank the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Derivatives of oxobutanoates are biologically important. 4-Methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, e.g. the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum (Billington et al., 1979). Some oxobutanoates exhibit cytotoxic properties (Stancho et al., 2008). The crystal structure of ethyl 4-chloro-2-[2-(2-methoxyphenyl)hydrazono]-3-oxobutanoate has been reported (Alpaslan et al., 2005).

The molecule of the title oxobutanoate derivative, (I), is nearly planar which can be readily indicated by the interplanar angle between the benzene ring and the mean plane through the hydrazono-3-oxobutanoate unit (N1–N2/O1–O3/C7–C10) is 2.69 (3)°, and the C10–C7–C8–C9 torsion angle of 2.81 (15)°. The ethyl group is slightly deviated from the mean plane of the molecule with the torsion angle C10–O3–C11–C12 being 170.6 (9)°. Within the molecule, an intramolecular N1—H1···O1 hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995) (Table 1).

In the crystal packing, the C5—H5A···O1 interactions link two molecules into a dimer (Table 1 and Fig. 2). The dimers are linked together through C2—H2A···O2 interactions to form molecular ribbons along the [011] direction; these ribbons are further stabilized by Cl···Cl [3.2916 (3)Å] contacts. These ribbons are stacked, being connected by C···O [3.2367 (12), 3.3716 (14) and 3.3948 (12)Å] contacts.

Experimental

Compound (I) was prepared as reported in literature (Amir & Agarwal, 1997). 4-Chloroaniline (1.27 g, 10 mmol) was dissolved in dilute hydrochloric acid (11.0 ml) and cooled to 273 K in an ice bath. To this cold solution, sodium nitrite (1.6 g in 5.0 ml water) was added. The temperature of the reaction mixture was not allowed to raise above 323 K. The resulting diazonium salt solution was then filtered into a cooled solution of ethylacetoacetate (1.7 ml) and sodium acetate (3.5 g) in ethanol (50 ml). The resulting yellow solid was filtered, washed with ice-cold water, dried and recrystallized from methanol. The yield was 1.95 g (81%); M.p. 365 K.

Refinement

All H atoms were placed in calculated positions with d(N—H) = 0.91 Å, d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl-H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl substituents.

Figures

Fig. 1.
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The N—H···O hydrogen bond was drawn as a dashed line.
Fig. 2.
The packing diagram of (I), viewed along in projection the a axis, showing the arrangement of the dimers into molecular ribbons. C—H···O contacts are shown as dashed lines.

Crystal data

C12H13ClN2O3F(000) = 560
Mr = 268.69Dx = 1.413 Mg m3
Monoclinic, P21/cMelting point: 365 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.0259 (1) ÅCell parameters from 4723 reflections
b = 17.0892 (4) Åθ = 1.6–32.9°
c = 18.4934 (5) ŵ = 0.30 mm1
β = 96.802 (1)°T = 100 K
V = 1263.38 (6) Å3Needle, brown
Z = 40.77 × 0.13 × 0.06 mm

Data collection

Bruker APEXII CCD area-detector diffractometer4723 independent reflections
Radiation source: sealed tube3972 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 32.9°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −6→6
Tmin = 0.799, Tmax = 0.982k = −26→25
38796 measured reflectionsl = −28→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0602P)2 + 0.255P] where P = (Fo2 + 2Fc2)/3
4723 reflections(Δ/σ)max = 0.002
165 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.33403 (7)0.917736 (14)0.966487 (14)0.02331 (8)
O11.1283 (2)0.43897 (5)0.92388 (4)0.02458 (17)
O20.4082 (2)0.41534 (4)0.74203 (5)0.02490 (17)
O30.40449 (18)0.54627 (4)0.73206 (4)0.01834 (15)
N11.0478 (2)0.58595 (5)0.89744 (5)0.01680 (16)
H11.14610.54840.92770.020*
N20.8324 (2)0.56553 (5)0.84259 (4)0.01607 (15)
C10.9700 (2)0.72408 (6)0.86488 (5)0.01779 (18)
H1A0.82690.71090.82350.021*
C21.0384 (3)0.80222 (6)0.88190 (5)0.01815 (18)
H2A0.94130.84180.85210.022*
C31.2535 (2)0.82023 (5)0.94400 (5)0.01668 (17)
C41.4070 (2)0.76234 (6)0.98899 (5)0.01816 (18)
H4A1.55300.77561.02990.022*
C51.3393 (2)0.68425 (6)0.97197 (5)0.01727 (17)
H5A1.44080.64471.00130.021*
C61.1185 (2)0.66568 (5)0.91065 (5)0.01550 (17)
C70.7628 (2)0.49093 (5)0.82808 (5)0.01602 (17)
C80.9246 (2)0.42509 (6)0.86964 (5)0.01779 (18)
C90.8553 (3)0.34161 (6)0.84741 (6)0.02176 (19)
H9A0.98750.30740.88040.033*
H9B0.91160.33370.79890.033*
H9C0.62230.33040.84860.033*
C100.5100 (2)0.47889 (6)0.76369 (5)0.01646 (17)
C110.1696 (2)0.53891 (6)0.66655 (5)0.01926 (18)
H11A−0.01310.50440.67520.023*
H11B0.28040.51740.62720.023*
C120.0397 (3)0.61975 (7)0.64728 (6)0.0245 (2)
H12A−0.11230.61750.60320.037*
H12B0.22350.65360.64030.037*
H12C−0.07490.63970.68610.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.03064 (14)0.01473 (12)0.02328 (13)−0.00497 (9)−0.00211 (9)−0.00104 (8)
O10.0277 (4)0.0185 (3)0.0251 (4)0.0003 (3)−0.0070 (3)0.0031 (3)
O20.0306 (4)0.0165 (3)0.0254 (4)−0.0037 (3)−0.0057 (3)−0.0015 (3)
O30.0185 (3)0.0163 (3)0.0190 (3)−0.0001 (2)−0.0030 (2)0.0012 (2)
N10.0185 (4)0.0146 (3)0.0163 (4)−0.0003 (3)−0.0018 (3)0.0001 (3)
N20.0163 (3)0.0162 (3)0.0156 (3)−0.0012 (3)0.0012 (3)−0.0015 (3)
C10.0200 (4)0.0162 (4)0.0162 (4)−0.0009 (3)−0.0022 (3)0.0005 (3)
C20.0203 (4)0.0157 (4)0.0176 (4)−0.0005 (3)−0.0011 (3)0.0010 (3)
C30.0191 (4)0.0137 (4)0.0170 (4)−0.0018 (3)0.0014 (3)−0.0006 (3)
C40.0187 (4)0.0179 (4)0.0169 (4)−0.0016 (3)−0.0023 (3)0.0007 (3)
C50.0178 (4)0.0163 (4)0.0169 (4)0.0000 (3)−0.0014 (3)0.0011 (3)
C60.0163 (4)0.0135 (4)0.0165 (4)−0.0005 (3)0.0012 (3)−0.0003 (3)
C70.0168 (4)0.0147 (4)0.0162 (4)−0.0008 (3)0.0002 (3)0.0008 (3)
C80.0189 (4)0.0155 (4)0.0189 (4)−0.0003 (3)0.0019 (3)0.0015 (3)
C90.0250 (5)0.0149 (4)0.0248 (5)0.0003 (4)0.0001 (4)0.0017 (3)
C100.0170 (4)0.0162 (4)0.0160 (4)−0.0005 (3)0.0015 (3)0.0001 (3)
C110.0186 (4)0.0216 (4)0.0169 (4)0.0008 (3)−0.0012 (3)0.0006 (3)
C120.0238 (5)0.0235 (5)0.0253 (5)0.0032 (4)−0.0016 (4)0.0039 (4)

Geometric parameters (Å, °)

Cl1—C31.7386 (9)C4—H4A0.9300
O1—C81.2412 (12)C5—C61.3924 (13)
O2—C101.2121 (12)C5—H5A0.9300
O3—C101.3378 (12)C7—C81.4703 (13)
O3—C111.4514 (11)C7—C101.4864 (13)
N1—N21.3018 (11)C8—C91.5017 (14)
N1—C61.4072 (12)C9—H9A0.9600
N1—H10.9104C9—H9B0.9600
N2—C71.3258 (12)C9—H9C0.9600
C1—C21.3918 (14)C11—C121.5049 (15)
C1—C61.3964 (13)C11—H11A0.9700
C1—H1A0.9300C11—H11B0.9700
C2—C31.3885 (13)C12—H12A0.9600
C2—H2A0.9300C12—H12B0.9600
C3—C41.3895 (13)C12—H12C0.9600
C4—C51.3906 (14)
C10—O3—C11115.60 (8)C8—C7—C10122.13 (8)
N2—N1—C6119.81 (8)O1—C8—C7119.05 (9)
N2—N1—H1119.4O1—C8—C9119.11 (9)
C6—N1—H1120.7C7—C8—C9121.82 (9)
N1—N2—C7121.37 (8)C8—C9—H9A109.5
C2—C1—C6119.32 (9)C8—C9—H9B109.5
C2—C1—H1A120.3H9A—C9—H9B109.5
C6—C1—H1A120.3C8—C9—H9C109.5
C3—C2—C1119.14 (9)H9A—C9—H9C109.5
C3—C2—H2A120.4H9B—C9—H9C109.5
C1—C2—H2A120.4O2—C10—O3123.32 (9)
C2—C3—C4121.80 (9)O2—C10—C7124.16 (9)
C2—C3—Cl1119.38 (7)O3—C10—C7112.52 (8)
C4—C3—Cl1118.82 (7)O3—C11—C12106.97 (8)
C3—C4—C5119.11 (9)O3—C11—H11A110.3
C3—C4—H4A120.4C12—C11—H11A110.3
C5—C4—H4A120.4O3—C11—H11B110.3
C4—C5—C6119.48 (9)C12—C11—H11B110.3
C4—C5—H5A120.3H11A—C11—H11B108.6
C6—C5—H5A120.3C11—C12—H12A109.5
C5—C6—C1121.12 (9)C11—C12—H12B109.5
C5—C6—N1117.30 (8)H12A—C12—H12B109.5
C1—C6—N1121.57 (8)C11—C12—H12C109.5
N2—C7—C8124.07 (8)H12A—C12—H12C109.5
N2—C7—C10113.78 (8)H12B—C12—H12C109.5
C6—N1—N2—C7179.20 (9)N1—N2—C7—C8−2.05 (15)
C6—C1—C2—C30.13 (15)N1—N2—C7—C10179.71 (9)
C1—C2—C3—C41.12 (16)N2—C7—C8—O13.50 (16)
C1—C2—C3—Cl1−178.83 (8)C10—C7—C8—O1−178.40 (10)
C2—C3—C4—C5−1.00 (15)N2—C7—C8—C9−175.28 (10)
Cl1—C3—C4—C5178.94 (8)C10—C7—C8—C92.81 (15)
C3—C4—C5—C6−0.36 (15)C11—O3—C10—O2−3.29 (14)
C4—C5—C6—C11.61 (15)C11—O3—C10—C7177.01 (8)
C4—C5—C6—N1−177.46 (9)N2—C7—C10—O2−178.82 (10)
C2—C1—C6—C5−1.49 (15)C8—C7—C10—O22.90 (16)
C2—C1—C6—N1177.54 (9)N2—C7—C10—O30.88 (12)
N2—N1—C6—C5177.14 (9)C8—C7—C10—O3−177.40 (9)
N2—N1—C6—C1−1.93 (15)C10—O3—C11—C12170.62 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.911.872.5721 (12)132
C2—H2A···O2i0.932.453.3536 (13)164
C5—H5A···O1ii0.932.533.4293 (12)163

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2415).

References

  • Alpaslan, G., Özdamar, O., Odabaşogˇlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, o3442–o3444.
  • Amir, M. & Agarwal, R. (1997). J. Indian Chem. Soc 74, 154–155.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Billington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J 182, 827–836. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stancho, S., Georgi, M., Frank, J. & Ilia, M. (2008). Eur. J. Med. Chem.43, 694–706. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography