PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1027–o1028.
Published online 2009 April 10. doi:  10.1107/S1600536809012896
PMCID: PMC2977711

(4-Chloro-2-fluoro­phen­yl)[1-(2,6-difluoro­phen­yl)but-3-en­yl]amine

Abstract

In the mol­ecule of the title homoallylic amine, C16H13ClF3N, the dihedral angle between the two benzene rings is 84.63 (4)°. Weak intra­molecular N—H(...)F hydrogen bonds generate S(6) and S(5) ring motifs. In the crystal structure, weak inter­molecuar N—H(...)F hydrogen bonds link mol­ecules into centrosymmetric dimers which are arranged in mol­ecular sheets parallel to the ac plane.

Related literature

For standard bond lengths, see Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]). For background to the bioactivity and applications of homoallylic amines, see: Edwards et al. (1998 [triangle]); Robert (1998 [triangle]); Sabine & Horst (1991 [triangle]); Xie et al. (1989 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1027-scheme1.jpg

Experimental

Crystal data

  • C16H13ClF3N
  • M r = 311.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1027-efi1.jpg
  • a = 10.8980 (1) Å
  • b = 14.0073 (2) Å
  • c = 10.1651 (1) Å
  • β = 113.018 (1)°
  • V = 1428.17 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 100 K
  • 0.50 × 0.39 × 0.27 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.868, T max = 0.926
  • 32850 measured reflections
  • 7434 independent reflections
  • 6099 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.119
  • S = 1.04
  • 7434 reflections
  • 202 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.86 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012896/lh2803sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012896/lh2803Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities. SR thanks Dr Gautam Das, Syngene International Limited, Bangalore, India, for allocation of research resources. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Homoallylic amines are valuable intermediates in organic synthesis and as starting materials in the preparation of biologically active substances, resolving agents and chiral auxillaries for asymmetric synthesis (Sabine & Horst, 1991) and synthesis of β-amino acids (Xie et al., 1989), β-lactams (Edwards et al., 1998) and HIV-proteaseinhibitors (Robert, 1998). Prompted by these observations, we have synthesized the title compound and its crystal structure is presented herein.

In the molecular structure of the title homoallylic amine (I) (Fig. 1), angle between the mean planes of the benzene rings is 84.63 (4)°. The orientation of the but-3-enyl substituent group [C7/C14–C16] with respect to the 2,6-difluoro-phenyl ring is reflected in the torsion angle C8–C7–C14–C15 = 59.43 (9)° which indicates a (+)-syn-clinal conformation. The torsion angle C7–C14–C15–C16 = -122.17 (11)°. The bond distances in (I) have normal values (Allen et al., 1987).

In the structure, intramolecular N1—H1N1···F1 and N1—H1N1···F3 hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995) (Table 1). In the crystal structure, weak N—H···F hydrogen bonds (Table 1, Fig. 2) link molecules into centrosymmetric dimers and these dimers are arranged into molecular sheets parallel to the ac plane.

Experimental

To a mixture of 2,6-difluorobenzaldehyde (0.5 g, 3.5 mmol), 4-chloro-2-fluoro aniline (0.51 g, 3.5 mmol) and allyltributyltin (1.1 g, 3.5 mmol) in acetonitrile (5 ml), trifluoro acetic acid (0.04 g, 0.35 mmol) was added. The reaction mixture was stirred at 299 K under nitrogen atmosphere for 2 h. Completion of the reaction was monitored by TLC. The reaction mixture was then extracted with diethyl ether (3 x 20 ml) and the combined organic layer were concentrated in vacuum and purified by flash chromatography to afford the pure homoallylic amine. The yield was found to be 0.98 g (90% yield). Colorless block-shaped single crystals of the title compound was recrystalized in acetone by slow evaporation of the solvent, M.p 399–400 K.

Refinement

Amine and =CH2 H atoms were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and 0.98 Å, Uiso = 1.2Ueq(C) for CH. The highest residual electron density peak is located at 0.63 Å from Cl1 and the deepest hole is located at 0.62 Å from Cl1.

Figures

Fig. 1.
The molecluar structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are drawn as dash lines.
Fig. 2.
Part of the crystal structure of (I), viewed along the b axis, showing the arrangement of the hydrogen-bonded dimers into molecular sheets. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H13ClF3NF(000) = 640
Mr = 311.72Dx = 1.450 Mg m3
Monoclinic, P21/cMelting point = 399–400 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.8980 (1) ÅCell parameters from 7434 reflections
b = 14.0073 (2) Åθ = 2.0–37.5°
c = 10.1651 (1) ŵ = 0.29 mm1
β = 113.018 (1)°T = 100 K
V = 1428.17 (3) Å3Block, colorless
Z = 40.50 × 0.39 × 0.27 mm

Data collection

Bruker APEXII CCD area-detector diffractometer7434 independent reflections
Radiation source: sealed tube6099 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 37.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −15→18
Tmin = 0.868, Tmax = 0.926k = −22→23
32850 measured reflectionsl = −17→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.059P)2 + 0.3248P] where P = (Fo2 + 2Fc2)/3
7434 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.85 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.35924 (3)0.625873 (17)1.05066 (4)0.03621 (8)
F10.89730 (5)0.44888 (4)0.88286 (5)0.02227 (11)
F20.65542 (6)0.64050 (4)0.48567 (6)0.02478 (12)
F30.85689 (7)0.60562 (5)1.18096 (6)0.03051 (13)
N10.84154 (7)0.64304 (5)0.91602 (7)0.01799 (11)
C10.59745 (8)0.65594 (6)0.83617 (9)0.01870 (13)
H1A0.58730.66950.74290.022*
C20.48485 (9)0.65290 (6)0.86995 (10)0.02241 (15)
H2A0.40070.66430.79960.027*
C30.49921 (10)0.63283 (6)1.00871 (11)0.02434 (16)
C40.62453 (11)0.61733 (6)1.11567 (10)0.02539 (17)
H4A0.63470.60511.20930.030*
C50.73310 (9)0.62070 (6)1.07837 (9)0.02114 (14)
C60.72486 (8)0.63897 (5)0.93977 (8)0.01658 (12)
C70.84187 (7)0.64023 (5)0.77318 (8)0.01602 (12)
H7A0.79000.69490.71990.019*
C80.78026 (7)0.55017 (5)0.68918 (7)0.01418 (11)
C90.69022 (8)0.55353 (5)0.54747 (8)0.01668 (12)
C100.63233 (8)0.47417 (6)0.46594 (8)0.01959 (13)
H10A0.57210.48060.37170.024*
C110.66630 (9)0.38468 (6)0.52828 (9)0.02012 (14)
H11A0.62850.33030.47540.024*
C120.75652 (8)0.37582 (5)0.66927 (9)0.01879 (13)
H12A0.78010.31610.71170.023*
C130.81007 (7)0.45824 (5)0.74445 (8)0.01578 (12)
C140.98669 (8)0.65337 (6)0.78678 (9)0.02065 (14)
H14A1.02320.71070.84160.025*
H14B1.03960.59960.83890.025*
C150.99758 (9)0.66087 (6)0.64501 (10)0.02264 (15)
H15A0.95010.70930.58360.027*
C161.06994 (12)0.60355 (8)0.60087 (13)0.0329 (2)
H1N10.9099 (16)0.6141 (10)0.9828 (17)0.033 (4)*
H16B1.1209 (16)0.5526 (12)0.6600 (17)0.041 (4)*
H16A1.0756 (18)0.6098 (12)0.513 (2)0.049 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.04381 (15)0.02600 (11)0.05793 (18)−0.00690 (9)0.04060 (14)−0.00647 (10)
F10.0223 (2)0.0231 (2)0.0163 (2)0.00354 (17)0.00191 (17)0.00387 (17)
F20.0323 (3)0.0181 (2)0.0175 (2)0.00117 (18)0.0027 (2)0.00436 (17)
F30.0343 (3)0.0376 (3)0.0167 (2)0.0065 (2)0.0068 (2)0.0050 (2)
N10.0171 (3)0.0222 (3)0.0138 (2)0.0005 (2)0.0051 (2)−0.0018 (2)
C10.0189 (3)0.0205 (3)0.0177 (3)−0.0013 (2)0.0083 (2)−0.0033 (2)
C20.0216 (4)0.0214 (3)0.0271 (4)−0.0026 (3)0.0127 (3)−0.0062 (3)
C30.0312 (4)0.0177 (3)0.0338 (4)−0.0045 (3)0.0233 (4)−0.0050 (3)
C40.0398 (5)0.0197 (3)0.0243 (4)−0.0011 (3)0.0208 (4)0.0002 (3)
C50.0286 (4)0.0187 (3)0.0172 (3)0.0009 (3)0.0101 (3)0.0003 (2)
C60.0199 (3)0.0149 (3)0.0159 (3)−0.0008 (2)0.0080 (2)−0.0023 (2)
C70.0162 (3)0.0165 (3)0.0151 (3)−0.0012 (2)0.0059 (2)−0.0011 (2)
C80.0144 (3)0.0153 (3)0.0132 (3)0.0001 (2)0.0057 (2)0.0001 (2)
C90.0193 (3)0.0159 (3)0.0141 (3)0.0004 (2)0.0057 (2)0.0012 (2)
C100.0214 (3)0.0205 (3)0.0148 (3)−0.0019 (2)0.0049 (2)−0.0024 (2)
C110.0224 (3)0.0178 (3)0.0206 (3)−0.0028 (2)0.0089 (3)−0.0038 (2)
C120.0209 (3)0.0155 (3)0.0213 (3)0.0006 (2)0.0096 (3)0.0007 (2)
C130.0148 (3)0.0177 (3)0.0146 (3)0.0016 (2)0.0054 (2)0.0019 (2)
C140.0166 (3)0.0239 (3)0.0214 (3)−0.0038 (2)0.0075 (3)−0.0009 (3)
C150.0211 (3)0.0241 (3)0.0254 (4)−0.0005 (3)0.0120 (3)0.0054 (3)
C160.0365 (5)0.0360 (5)0.0357 (5)0.0056 (4)0.0245 (4)0.0063 (4)

Geometric parameters (Å, °)

Cl1—C31.7398 (9)C7—H7A0.9800
F1—C131.3618 (9)C8—C91.3910 (10)
F2—C91.3550 (9)C8—C131.3915 (10)
F3—C51.3608 (11)C9—C101.3826 (11)
N1—C61.3851 (11)C10—C111.3879 (11)
N1—C71.4539 (10)C10—H10A0.9300
N1—H1N10.886 (16)C11—C121.3907 (12)
C1—C61.3964 (11)C11—H11A0.9300
C1—C21.3983 (12)C12—C131.3816 (11)
C1—H1A0.9300C12—H12A0.9300
C2—C31.3857 (14)C14—C151.4953 (12)
C2—H2A0.9300C14—H14A0.9700
C3—C41.3904 (15)C14—H14B0.9700
C4—C51.3773 (13)C15—C161.3208 (14)
C4—H4A0.9300C15—H15A0.9300
C5—C61.3999 (11)C16—H16B0.958 (17)
C7—C81.5242 (10)C16—H16A0.924 (19)
C7—C141.5406 (11)
C6—N1—C7122.26 (7)C13—C8—C7123.88 (6)
C6—N1—H1N1113.7 (10)F2—C9—C10117.74 (7)
C7—N1—H1N1115.1 (10)F2—C9—C8117.83 (6)
C6—C1—C2121.26 (8)C10—C9—C8124.42 (7)
C6—C1—H1A119.4C9—C10—C11118.34 (7)
C2—C1—H1A119.4C9—C10—H10A120.8
C3—C2—C1119.70 (9)C11—C10—H10A120.8
C3—C2—H2A120.2C10—C11—C12120.40 (7)
C1—C2—H2A120.2C10—C11—H11A119.8
C2—C3—C4120.87 (8)C12—C11—H11A119.8
C2—C3—Cl1120.00 (8)C13—C12—C11118.10 (7)
C4—C3—Cl1119.13 (7)C13—C12—H12A120.9
C5—C4—C3117.80 (8)C11—C12—H12A120.9
C5—C4—H4A121.1F1—C13—C12117.66 (7)
C3—C4—H4A121.1F1—C13—C8117.69 (7)
F3—C5—C4118.99 (8)C12—C13—C8124.64 (7)
F3—C5—C6116.99 (8)C15—C14—C7112.74 (7)
C4—C5—C6124.01 (8)C15—C14—H14A109.0
N1—C6—C1124.85 (7)C7—C14—H14A109.0
N1—C6—C5118.75 (7)C15—C14—H14B109.0
C1—C6—C5116.34 (8)C7—C14—H14B109.0
N1—C7—C8114.16 (6)H14A—C14—H14B107.8
N1—C7—C14108.04 (6)C16—C15—C14124.58 (9)
C8—C7—C14111.13 (6)C16—C15—H15A117.7
N1—C7—H7A107.8C14—C15—H15A117.7
C8—C7—H7A107.8C15—C16—H16B121.1 (10)
C14—C7—H7A107.8C15—C16—H16A123.1 (11)
C9—C8—C13114.10 (6)H16B—C16—H16A115.8 (14)
C9—C8—C7122.01 (6)
C6—C1—C2—C30.07 (12)N1—C7—C8—C13−47.16 (10)
C1—C2—C3—C41.19 (12)C14—C7—C8—C1375.34 (9)
C1—C2—C3—Cl1−178.34 (6)C13—C8—C9—F2179.74 (7)
C2—C3—C4—C5−1.30 (12)C7—C8—C9—F2−1.57 (11)
Cl1—C3—C4—C5178.24 (6)C13—C8—C9—C100.69 (11)
C3—C4—C5—F3−179.88 (7)C7—C8—C9—C10179.38 (7)
C3—C4—C5—C60.17 (13)F2—C9—C10—C11−179.51 (8)
C7—N1—C6—C1−16.99 (11)C8—C9—C10—C11−0.46 (13)
C7—N1—C6—C5165.95 (7)C9—C10—C11—C12−0.06 (13)
C2—C1—C6—N1−178.25 (7)C10—C11—C12—C130.28 (12)
C2—C1—C6—C5−1.12 (11)C11—C12—C13—F1179.36 (7)
F3—C5—C6—N1−1.62 (11)C11—C12—C13—C8−0.01 (12)
C4—C5—C6—N1178.32 (8)C9—C8—C13—F1−179.82 (6)
F3—C5—C6—C1−178.93 (7)C7—C8—C13—F11.51 (11)
C4—C5—C6—C11.02 (12)C9—C8—C13—C12−0.44 (11)
C6—N1—C7—C8−59.79 (9)C7—C8—C13—C12−179.11 (7)
C6—N1—C7—C14176.04 (7)N1—C7—C14—C15−174.60 (7)
N1—C7—C8—C9134.28 (7)C8—C7—C14—C1559.43 (9)
C14—C7—C8—C9−103.22 (8)C7—C14—C15—C16−122.17 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···F10.886 (17)2.510 (14)2.8354 (9)102.4 (11)
N1—H1N1···F30.886 (17)2.306 (17)2.6839 (9)105.7 (14)
N1—H1N1···F1i0.886 (17)2.194 (17)3.0639 (9)167.1 (16)
C7—H7A···F20.982.382.8330 (10)107

Symmetry codes: (i) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2803).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Edwards, N., Macrichie, J. A. & Parsons, P. J. (1998). Tetrahedron Lett 39, 3605–3608.
  • Robert, B. (1998). Chem. Rev 98, 1407–1438. [PubMed]
  • Sabine, L. & Horst, K. (1991). J. Org. Chem 56, 5883–5889.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xie, J., Soleihac, J. M., Schimidt, C., Peyroux, J., Roques, B. P. & Fornie, Z. M. (1989). J. Med. Chem 32, 1497–1503. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography