PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1023–o1024.
Published online 2009 April 10. doi:  10.1107/S1600536809012811
PMCID: PMC2977708

1-(3-Ammonio­methyl-2,4,6-trimethyl­benz­yl)-3-(2,4,6-trimethyl­phen­yl)imidazol-1-ium dibromide monohydrate

Abstract

In the title compound, C25H35N3 2+·2Br·H2O, the dihedral angles between the imidazole ring and the two outer benzene rings are 80.16 (16) and 69.40 (18)°. The component species are linked by N—H(...)Br, O—H(...)Br and C—H(...)Br hydrogen bonds.

Related literature

For carbene ligands and complexes, see: Alcalde et al. (2007 [triangle]); Douthwaite et al. (2004 [triangle]); Magill et al. (2001 [triangle]). For phosphine ligands and complexes, see: Cao et al. (2000 [triangle]); Liou et al. (1995 [triangle]); Rybtchinski et al. (1996 [triangle], 1999 [triangle], 2001 [triangle]). For a related synthesis, see: Gandelman et al. (1997 [triangle]). For related literature, see: Caddick et al. (2004 [triangle]); Hahn (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1023-scheme1.jpg

Experimental

Crystal data

  • C25H35N3 2+·2Br·H2O
  • M r = 555.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1023-efi1.jpg
  • a = 10.594 (4) Å
  • b = 10.800 (3) Å
  • c = 13.193 (4) Å
  • α = 66.48 (4)°
  • β = 70.26 (4)°
  • γ = 80.58 (3)°
  • V = 1302.0 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.13 mm−1
  • T = 294 K
  • 0.50 × 0.46 × 0.40 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: spherical (Farrugia, 1999 [triangle]) T min = 0.303, T max = 0.367
  • 4856 measured reflections
  • 4745 independent reflections
  • 2966 reflections with I > 2σ(I)
  • R int = 0.007
  • 3 standard reflections every 300 reflections intensity decay: 2.7%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.203
  • S = 1.09
  • 4745 reflections
  • 300 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.01 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: DIFRAC (Gabe et al., 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809012811/zl2182sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012811/zl2182Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support for this work by the Natural Science Foundation of China is gratefully acknowledged.

supplementary crystallographic information

Comment

Transition metal complexes bearing N-heterocyclic carbene (NHC) ligands have attracted considerable attention in organometallic chemistry and catalysis. Compared to widely used phosphine complexes, the NHC complexes have been shown to be remarkably stable towards heat, air and moisture (Hahn, 2006). Rencently, phosphine complexes and phosphine-amido complexes were found to be active catalysts for the selective metal insertion into strong unstrained aryl-methyl bonds under very mild conditions (Cao et al., 2000; Gandelman et al., 1997; Liou et al., 1995; Rybtchinski et al., 1996; Rybtchinski et al., 1999; Rybtchinski et al., 2001). This prompted us to investigate whether NHC-amido complexes could provide different reactivity from phosphine-amido complexes in the aryl-methyl bond activation process. The title compound, a stable precursor of an NHC-amido ligand, was synthesized in moderate yield by reacting 1-[3-(bromomethyl)-2,4,6-trimethylbenzyl]-3-(2,4,6-trimethylphenyl)-1H-imidazol-3-ium bromide with a 10-fold excess of dimethylamine in methanol.

In the title compound (Fig. 1), the dihedral angles between the imidazole ring and the two outer benzene rings are 80.16 (16)° and 69.40 (18)°. A solvate water molecule and the bromide anions are linked to the main molecule via N—H···Br, O—H···Br and C—H···Br hydrogen bonds, and these intramolecular hydrogen bonds help to stabilize the crystal structure (Fig. 2).

Experimental

A mixture of 1-mesityl-1H-imidazole (2.79 g, 15.0 mmol) and 2,6-bis(bromomethyl)mesitylene (4.82 g, 15.0 mmol) in dioxane (30 ml) was heated under reflex with stirring for 0.5 h. After this the mixture was cooled to room temperature, the white precipitate was filtered and washed with ether to remove unreacted starting material. The resulting mixture of the monoimidazolium (4.42 g, 59.9%) and diimidazolium salts was separated by flash chromatography (CH2Cl2/CH3OH (10/1, v/v)). Then, the monoimidazolium salt was dissovled in 35 ml of methanol and a 10-fold excess of dimethylamine (4.04 g, 89.8 mmol) was added. The resulting reaction mixture was heated for 6 h at 333 K. The product was obtained as a white powder (3.99 g, 82.8%) after the solvent removal under vacuum. Crystallization by slow evaporation of the solvent from a dichloromethane solution at ambient temperature afforded colorless crystals over a period of several days. m.p. 501 K. 1H NMR (400 MHz, CDCl3): δ = 10.68 (brs, 1H, N-H), 10.31 (s, 1H, Imi-H), 8.30 (s, 1H, Imi-H), 7.09 (s, 1H, Imi-H), 6.98 (m, 3H, Ar-H), 6.00 (s, 2H, Imi-CH2), 4.58 (s, 2H, NHCH2), 2.97 (s, 6H, NHCH3), 2.69 (s, 3H, ArCH3), 2.47 (s, 3H, ArCH3), 2.33 (s, 3H, ArCH3), 2.31 (s, 3H, ArCH3), 2.06 (s, 3H, ArCH3), 2.04 (s, 3H, ArCH3). 13C NMR (400 MHz, CDCl3): δ = 141.2, 140.7, 140.5, 139.9, 137.2, 134.1, 132.0, 130.7, 129.8, 128.5, 126.2, 123.9, 123.5, 56.1, 48.6, 21.2, 21.1, 20.2, 18.4, 17.6. MS (ESI) m/z = 455.5 [M - H2O - HBr]+, 376.1 [M - H2O - HBr - Br]+.

Refinement

H atoms of the water molecule and N-H hydrogen atoms were located in difference Fourier maps and were refined isotropically with O-H and N-H distances of 0.82 (1) and 0.91 (1) Å, and their Uiso values were freely refined. All other H atoms were positioned geometrically, with C-H = 0.93, 0.96 and 0.97 Å for aromatic/imidazole, methyl and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted.

Crystal data

C25H35N32+·2Br·H2OZ = 2
Mr = 555.40F(000) = 572
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Melting point: 501 K
a = 10.594 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.800 (3) ÅCell parameters from 23 reflections
c = 13.193 (4) Åθ = 4.5–7.8°
α = 66.48 (4)°µ = 3.13 mm1
β = 70.26 (4)°T = 294 K
γ = 80.58 (3)°Block, colourless
V = 1302.0 (9) Å30.50 × 0.46 × 0.40 mm

Data collection

Enraf–Nonius CAD-4 diffractometer2966 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.007
graphiteθmax = 25.6°, θmin = 1.8°
ω/2θ scansh = −12→12
Absorption correction: for a sphere (Farrugia, 1999)k = −4→13
Tmin = 0.303, Tmax = 0.367l = −14→15
4856 measured reflections3 standard reflections every 300 reflections
4745 independent reflections intensity decay: 2.7%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.12P)2 + 0.3033P] where P = (Fo2 + 2Fc2)/3
4745 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 1.01 e Å3
4 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.05853 (7)0.78890 (7)0.34382 (7)0.0653 (3)
Br20.53218 (8)0.62059 (8)0.28647 (7)0.0652 (3)
O10.3386 (6)0.7953 (7)0.1251 (4)0.0685 (14)
H1O10.272 (4)0.815 (8)0.170 (4)0.07 (3)*
H1O20.397 (5)0.764 (8)0.157 (5)0.07 (3)*
N10.3013 (5)0.4016 (4)0.4497 (4)0.0341 (10)
H1N0.383 (3)0.438 (6)0.413 (5)0.056 (19)*
N20.3043 (4)0.0868 (4)0.1764 (4)0.0308 (9)
N30.1566 (4)0.2120 (4)0.0972 (4)0.0336 (10)
C10.3488 (5)0.1091 (5)0.3941 (5)0.0326 (11)
C20.4293 (5)0.0520 (5)0.3132 (4)0.0303 (11)
C30.5697 (5)0.0588 (5)0.2778 (5)0.0339 (12)
C40.6263 (5)0.1238 (5)0.3225 (5)0.0342 (12)
H40.71930.12540.30100.041*
C50.5505 (5)0.1865 (5)0.3978 (4)0.0301 (11)
C60.4093 (5)0.1809 (5)0.4329 (4)0.0305 (11)
C70.3254 (5)0.2517 (5)0.5130 (5)0.0341 (12)
H7A0.36990.24080.56940.041*
H7B0.23950.20890.55480.041*
C80.2255 (6)0.4298 (6)0.3664 (5)0.0455 (14)
H8A0.26430.37720.31870.068*
H8B0.22940.52410.31830.068*
H8C0.13360.40640.40810.068*
C90.2247 (6)0.4663 (6)0.5380 (6)0.0473 (15)
H9A0.21310.56160.49840.071*
H9B0.27450.45110.59090.071*
H9C0.13840.42670.58020.071*
C100.1998 (5)0.0854 (6)0.4431 (5)0.0398 (13)
H10A0.15370.15550.39480.060*
H10B0.16780.08640.52010.060*
H10C0.1833−0.00060.44550.060*
C110.6620 (6)−0.0024 (6)0.1924 (5)0.0444 (14)
H11A0.6464−0.09710.22150.067*
H11B0.75370.01000.18260.067*
H11C0.64440.04130.11910.067*
C120.6214 (6)0.2566 (6)0.4402 (5)0.0385 (12)
H12A0.60900.35260.40460.058*
H12B0.71540.23260.42020.058*
H12C0.58500.22920.52290.058*
C130.3650 (6)−0.0154 (5)0.2643 (5)0.0351 (12)
H13A0.4318−0.07070.22860.042*
H13B0.2960−0.07410.32650.042*
C140.1737 (5)0.1112 (5)0.1895 (4)0.0302 (11)
H140.10520.06440.25390.036*
C150.3735 (6)0.1725 (6)0.0688 (5)0.0421 (14)
H150.46630.17500.03710.050*
C160.2853 (6)0.2512 (6)0.0174 (5)0.0437 (14)
H160.30420.3187−0.05620.052*
C170.0284 (5)0.2702 (5)0.0807 (5)0.0350 (12)
C18−0.0477 (5)0.3458 (6)0.1462 (5)0.0378 (12)
C19−0.1741 (6)0.3945 (6)0.1334 (5)0.0417 (13)
H19−0.22710.44490.17640.050*
C20−0.2221 (5)0.3696 (6)0.0589 (5)0.0414 (13)
C21−0.1385 (6)0.3010 (6)−0.0093 (6)0.0489 (15)
H21−0.16820.2895−0.06360.059*
C22−0.0132 (6)0.2492 (6)−0.0001 (5)0.0423 (13)
C230.0000 (7)0.3743 (7)0.2297 (6)0.0521 (16)
H23A−0.03640.46030.23340.078*
H23B0.09630.37570.20370.078*
H23C−0.02920.30500.30520.078*
C24−0.3623 (7)0.4168 (8)0.0498 (8)0.066 (2)
H24A−0.41660.43230.11870.099*
H24B−0.40160.34880.04130.099*
H24C−0.35750.4993−0.01640.099*
C250.0750 (8)0.1756 (9)−0.0766 (8)0.073 (2)
H25A0.02580.1644−0.12150.109*
H25B0.10220.0886−0.02930.109*
H25C0.15290.2271−0.12780.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0458 (4)0.0520 (4)0.0827 (6)−0.0118 (3)0.0013 (3)−0.0227 (4)
Br20.0657 (5)0.0598 (5)0.0600 (5)−0.0090 (3)−0.0138 (4)−0.0137 (4)
O10.058 (3)0.106 (4)0.053 (3)−0.005 (3)−0.016 (3)−0.039 (3)
N10.036 (2)0.034 (2)0.040 (3)−0.0018 (19)−0.012 (2)−0.020 (2)
N20.037 (2)0.028 (2)0.032 (2)0.0007 (18)−0.0126 (19)−0.0136 (19)
N30.033 (2)0.034 (2)0.030 (2)−0.0029 (18)−0.0117 (19)−0.0063 (19)
C10.031 (3)0.030 (3)0.034 (3)−0.004 (2)−0.010 (2)−0.009 (2)
C20.035 (3)0.024 (2)0.033 (3)−0.004 (2)−0.012 (2)−0.008 (2)
C30.036 (3)0.026 (3)0.037 (3)0.003 (2)−0.011 (2)−0.009 (2)
C40.028 (3)0.030 (3)0.042 (3)−0.003 (2)−0.012 (2)−0.009 (2)
C50.037 (3)0.022 (2)0.033 (3)−0.004 (2)−0.019 (2)−0.003 (2)
C60.037 (3)0.028 (3)0.027 (3)−0.006 (2)−0.011 (2)−0.007 (2)
C70.042 (3)0.032 (3)0.031 (3)−0.001 (2)−0.014 (2)−0.011 (2)
C80.061 (4)0.035 (3)0.050 (4)0.004 (3)−0.036 (3)−0.012 (3)
C90.051 (3)0.044 (3)0.056 (4)0.004 (3)−0.011 (3)−0.033 (3)
C100.034 (3)0.047 (3)0.048 (3)0.000 (2)−0.013 (3)−0.027 (3)
C110.037 (3)0.050 (3)0.053 (4)0.000 (3)−0.009 (3)−0.030 (3)
C120.042 (3)0.034 (3)0.046 (3)−0.007 (2)−0.018 (3)−0.015 (3)
C130.043 (3)0.027 (3)0.040 (3)0.001 (2)−0.020 (2)−0.013 (2)
C140.027 (3)0.033 (3)0.029 (3)−0.007 (2)−0.007 (2)−0.009 (2)
C150.029 (3)0.052 (3)0.033 (3)−0.004 (3)−0.005 (2)−0.007 (3)
C160.037 (3)0.052 (3)0.033 (3)−0.012 (3)−0.008 (2)−0.005 (3)
C170.033 (3)0.036 (3)0.033 (3)−0.005 (2)−0.010 (2)−0.009 (2)
C180.039 (3)0.037 (3)0.033 (3)−0.004 (2)−0.011 (2)−0.009 (2)
C190.040 (3)0.037 (3)0.039 (3)0.001 (2)−0.010 (3)−0.008 (3)
C200.034 (3)0.036 (3)0.051 (4)−0.006 (2)−0.017 (3)−0.007 (3)
C210.054 (4)0.047 (3)0.056 (4)−0.004 (3)−0.034 (3)−0.013 (3)
C220.045 (3)0.043 (3)0.045 (3)−0.003 (3)−0.019 (3)−0.017 (3)
C230.050 (4)0.067 (4)0.045 (4)0.007 (3)−0.018 (3)−0.027 (3)
C240.049 (4)0.057 (4)0.099 (6)0.004 (3)−0.044 (4)−0.021 (4)
C250.075 (5)0.090 (6)0.084 (6)0.022 (4)−0.042 (4)−0.059 (5)

Geometric parameters (Å, °)

O1—H1O10.81 (6)C10—H10C0.9600
O1—H1O20.82 (6)C11—H11A0.9600
N1—C81.482 (7)C11—H11B0.9600
N1—C71.521 (7)C11—H11C0.9600
N1—C91.526 (7)C12—H12A0.9600
N1—H1N0.90 (5)C12—H12B0.9600
N2—C141.330 (6)C12—H12C0.9600
N2—C151.371 (7)C13—H13A0.9700
N2—C131.492 (7)C13—H13B0.9700
N3—C141.314 (6)C14—H140.9300
N3—C161.418 (7)C15—C161.328 (8)
N3—C171.449 (7)C15—H150.9300
C1—C61.405 (7)C16—H160.9300
C1—C21.409 (7)C17—C221.387 (8)
C1—C101.512 (7)C17—C181.393 (8)
C2—C31.406 (7)C18—C191.396 (8)
C2—C131.497 (7)C18—C231.503 (8)
C3—C41.380 (8)C19—C201.376 (9)
C3—C111.517 (7)C19—H190.9300
C4—C51.382 (7)C20—C211.386 (9)
C4—H40.9300C20—C241.518 (8)
C5—C61.412 (7)C21—C221.379 (8)
C5—C121.503 (7)C21—H210.9300
C6—C71.510 (7)C22—C251.511 (9)
C7—H7A0.9700C23—H23A0.9600
C7—H7B0.9700C23—H23B0.9600
C8—H8A0.9600C23—H23C0.9600
C8—H8B0.9600C24—H24A0.9600
C8—H8C0.9600C24—H24B0.9600
C9—H9A0.9600C24—H24C0.9600
C9—H9B0.9600C25—H25A0.9600
C9—H9C0.9600C25—H25B0.9600
C10—H10A0.9600C25—H25C0.9600
C10—H10B0.9600
H1O1—O1—H1O2109 (6)H11A—C11—H11C109.5
C8—N1—C7113.5 (4)H11B—C11—H11C109.5
C8—N1—C9108.8 (4)C5—C12—H12A109.5
C7—N1—C9109.4 (4)C5—C12—H12B109.5
C8—N1—H1N111 (4)H12A—C12—H12B109.5
C7—N1—H1N107 (4)C5—C12—H12C109.5
C9—N1—H1N108 (4)H12A—C12—H12C109.5
C14—N2—C15108.3 (4)H12B—C12—H12C109.5
C14—N2—C13125.8 (4)N2—C13—C2110.9 (4)
C15—N2—C13125.9 (4)N2—C13—H13A109.5
C14—N3—C16107.7 (4)C2—C13—H13A109.5
C14—N3—C17125.5 (4)N2—C13—H13B109.5
C16—N3—C17126.7 (4)C2—C13—H13B109.5
C6—C1—C2119.5 (5)H13A—C13—H13B108.1
C6—C1—C10120.9 (5)N3—C14—N2109.3 (4)
C2—C1—C10119.5 (5)N3—C14—H14125.3
C3—C2—C1120.1 (5)N2—C14—H14125.3
C3—C2—C13120.0 (5)C16—C15—N2108.4 (5)
C1—C2—C13119.9 (5)C16—C15—H15125.8
C4—C3—C2118.8 (5)N2—C15—H15125.8
C4—C3—C11118.5 (5)C15—C16—N3106.2 (5)
C2—C3—C11122.7 (5)C15—C16—H16126.9
C3—C4—C5122.7 (5)N3—C16—H16126.9
C3—C4—H4118.6C22—C17—C18122.7 (5)
C5—C4—H4118.6C22—C17—N3118.7 (5)
C4—C5—C6118.7 (5)C18—C17—N3118.6 (5)
C4—C5—C12118.8 (5)C17—C18—C19117.4 (5)
C6—C5—C12122.6 (5)C17—C18—C23122.8 (5)
C1—C6—C5120.0 (4)C19—C18—C23119.7 (5)
C1—C6—C7120.9 (5)C20—C19—C18121.6 (5)
C5—C6—C7119.1 (4)C20—C19—H19119.2
C6—C7—N1113.2 (4)C18—C19—H19119.2
C6—C7—H7A108.9C19—C20—C21118.3 (5)
N1—C7—H7A108.9C19—C20—C24121.4 (6)
C6—C7—H7B108.9C21—C20—C24120.4 (6)
N1—C7—H7B108.9C22—C21—C20122.9 (6)
H7A—C7—H7B107.8C22—C21—H21118.6
N1—C8—H8A109.5C20—C21—H21118.6
N1—C8—H8B109.5C21—C22—C17116.9 (5)
H8A—C8—H8B109.5C21—C22—C25121.1 (6)
N1—C8—H8C109.5C17—C22—C25122.0 (5)
H8A—C8—H8C109.5C18—C23—H23A109.5
H8B—C8—H8C109.5C18—C23—H23B109.5
N1—C9—H9A109.5H23A—C23—H23B109.5
N1—C9—H9B109.5C18—C23—H23C109.5
H9A—C9—H9B109.5H23A—C23—H23C109.5
N1—C9—H9C109.5H23B—C23—H23C109.5
H9A—C9—H9C109.5C20—C24—H24A109.5
H9B—C9—H9C109.5C20—C24—H24B109.5
C1—C10—H10A109.5H24A—C24—H24B109.5
C1—C10—H10B109.5C20—C24—H24C109.5
H10A—C10—H10B109.5H24A—C24—H24C109.5
C1—C10—H10C109.5H24B—C24—H24C109.5
H10A—C10—H10C109.5C22—C25—H25A109.5
H10B—C10—H10C109.5C22—C25—H25B109.5
C3—C11—H11A109.5H25A—C25—H25B109.5
C3—C11—H11B109.5C22—C25—H25C109.5
H11A—C11—H11B109.5H25A—C25—H25C109.5
C3—C11—H11C109.5H25B—C25—H25C109.5
C6—C1—C2—C34.4 (7)C17—N3—C14—N2−178.2 (5)
C10—C1—C2—C3−172.1 (5)C15—N2—C14—N3−2.5 (6)
C6—C1—C2—C13−175.3 (5)C13—N2—C14—N3176.9 (4)
C10—C1—C2—C138.2 (7)C14—N2—C15—C161.5 (6)
C1—C2—C3—C4−0.9 (7)C13—N2—C15—C16−177.9 (5)
C13—C2—C3—C4178.8 (5)N2—C15—C16—N30.0 (7)
C1—C2—C3—C11179.1 (5)C14—N3—C16—C15−1.5 (6)
C13—C2—C3—C11−1.3 (8)C17—N3—C16—C15179.2 (5)
C2—C3—C4—C5−2.2 (8)C14—N3—C17—C22−110.0 (6)
C11—C3—C4—C5177.8 (5)C16—N3—C17—C2269.2 (7)
C3—C4—C5—C61.7 (8)C14—N3—C17—C1870.5 (7)
C3—C4—C5—C12−179.0 (5)C16—N3—C17—C18−110.3 (6)
C2—C1—C6—C5−4.9 (7)C22—C17—C18—C194.0 (8)
C10—C1—C6—C5171.5 (5)N3—C17—C18—C19−176.5 (5)
C2—C1—C6—C7175.7 (4)C22—C17—C18—C23−177.0 (6)
C10—C1—C6—C7−7.9 (8)N3—C17—C18—C232.5 (8)
C4—C5—C6—C11.9 (7)C17—C18—C19—C20−0.3 (8)
C12—C5—C6—C1−177.4 (5)C23—C18—C19—C20−179.3 (6)
C4—C5—C6—C7−178.6 (5)C18—C19—C20—C21−3.7 (9)
C12—C5—C6—C72.1 (7)C18—C19—C20—C24176.9 (6)
C1—C6—C7—N1−97.4 (6)C19—C20—C21—C224.4 (9)
C5—C6—C7—N183.1 (6)C24—C20—C21—C22−176.3 (6)
C8—N1—C7—C662.4 (6)C20—C21—C22—C17−0.9 (9)
C9—N1—C7—C6−175.9 (4)C20—C21—C22—C25−179.7 (7)
C14—N2—C13—C2−109.4 (6)C18—C17—C22—C21−3.4 (9)
C15—N2—C13—C269.9 (6)N3—C17—C22—C21177.1 (5)
C3—C2—C13—N2−104.4 (5)C18—C17—C22—C25175.4 (6)
C1—C2—C13—N275.3 (6)N3—C17—C22—C25−4.1 (9)
C16—N3—C14—N22.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···Br10.81 (6)2.58 (3)3.355 (6)160 (8)
O1—H1O2···Br20.82 (6)2.49 (6)3.283 (6)165 (7)
N1—H1N···Br20.90 (5)2.40 (3)3.238 (5)154 (6)
C9—H9B···Br2i0.962.853.792 (7)167
C12—H12A···Br20.962.823.765 (7)168
C14—H14···Br1ii0.932.793.436 (6)128
C16—H16···Br2iii0.932.813.597 (6)143

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2182).

References

  • Alcalde, E., Ceder, R. M., Lopez, C., Mesquida, N., Muller, G. & Rodriguez, S. (2007). Dalton. Trans. pp. 2696–2706. [PubMed]
  • Caddick, S., Cloke, F. G. N., Hitchcock, P. B. & Lewis, A. K. D. (2004). Angew. Chem. Int. Ed.43, 5824–5827. [PubMed]
  • Cao, Z. X. & Hall, M. B. (2000). Organometallics, 19, 3338–3346.
  • Douthwaite, R. E., Houghton, J. & Kariuki, B. M. (2004). Chem. Commun. pp. 698–699. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J., White, P. S. & Enright, G. D. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.
  • Gandelman, M., Vigalok, A., Shimon, L. J. W. & Milstein, D. (1997). Organometallics, 16, 3981–3986.
  • Hahn, F. E. (2006). Angew. Chem. Int. Ed.45, 1348–1352. [PubMed]
  • Liou, S.-Y., Gozin, M. & Milstein, D. (1995). J. Am. Chem. Soc.117, 9774–9775.
  • Magill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Wolliams, O. J., White, A. H. & Skelton, B. W. (2001). J. Organomet. Chem.617–618, 546–560.
  • Rybtchinski, B. & Milstein, D. (1999). J. Am. Chem. Soc.121, 4528–4529.
  • Rybtchinski, B., Oevers, S., Montag, M., Vigalok, A., Rozenberg, H., Martin, J. M. L. & Milstein, D. (2001). J. Am. Chem. Soc.123, 9064–9077. [PubMed]
  • Rybtchinski, B., Vigalok, A., Ben-David, Y. & Milstein, D. (1996). J. Am. Chem. Soc.118, 12406–12415.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography