PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1017.
Published online 2009 April 10. doi:  10.1107/S1600536809012665
PMCID: PMC2977703

N-(4-Isopropoxyphen­yl)acetamide

Abstract

In the mol­ecule of the title compound, C11H15NO2, the planar acetamide unit [maximum deviation of 0.0014 (6) Å] is oriented at a dihedral angle of 19.68 (4)° with respect to the aromatic ring. An intra­molecular C—H(...)O inter­action results in the formation of a six-membered ring. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains along the a axis

Related literature

For general background, see: Knesl et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1017-scheme1.jpg

Experimental

Crystal data

  • C11H15NO2
  • M r = 193.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1017-efi1.jpg
  • a = 9.3010 (19) Å
  • b = 7.6490 (15) Å
  • c = 31.394 (6) Å
  • V = 2233.5 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 294 K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.977, T max = 0.992
  • 2026 measured reflections
  • 2026 independent reflections
  • 1099 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.202
  • S = 1.01
  • 2026 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks D, I. DOI: 10.1107/S1600536809012665/hk2659sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012665/hk2659Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of our ongoing studies on tandutinib (Knesl et al., 2006), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. The B (O2/N/C10/C11) moiety is also planar with a maximum deviation of -0.0014 (6) Å for C10 atom, and it is oriented with respect to ring A at a dihedral angle of 19.68 (4)°. Intramolecular C-H···O interaction (Table 1) results in the formation of a six-membered ring C (O2/N/C6/C7/C10/H6A), having twisted conformation.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains along the a axis, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, N-(4-hydroxyphenyl)acetamide (50 mmol), 2-bromopropane (75 mmol) and potassium hydroxide (100 mmol) were mixed with ethanol (60 ml), and then the mixture was heated to reflux. Reaction progress was monitored by TLC. After ethanol removed in vacuo and filtration, the title compound was obtained (yield; 83.2%, m.p. 403 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.

Crystal data

C11H15NO2Dx = 1.149 Mg m3
Mr = 193.24Melting point: 403K K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.3010 (19) Åθ = 9–12°
b = 7.6490 (15) ŵ = 0.08 mm1
c = 31.394 (6) ÅT = 294 K
V = 2233.5 (8) Å3Block, colorless
Z = 80.30 × 0.10 × 0.10 mm
F(000) = 832

Data collection

Enraf–Nonius CAD-4 diffractometer1099 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.3°, θmin = 1.3°
ω/2θ scansh = 0→11
Absorption correction: ψ scan (North et al., 1968)k = 0→9
Tmin = 0.977, Tmax = 0.992l = 0→37
2026 measured reflections3 standard reflections every 120 min
2026 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.202w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2026 reflectionsΔρmax = 0.26 e Å3
127 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N0.5437 (3)0.2110 (3)0.52353 (8)0.0516 (7)
H0A0.46090.25640.51830.062*
O10.5722 (3)−0.0692 (3)0.68713 (7)0.0834 (8)
O20.7614 (2)0.1579 (3)0.49473 (7)0.0665 (7)
C10.5187 (7)−0.3739 (7)0.67643 (15)0.128 (2)
H1A0.5192−0.36130.64600.192*
H1B0.4231−0.35460.68700.192*
H1C0.5494−0.48970.68390.192*
C20.6254 (7)−0.2587 (7)0.74329 (13)0.1163 (17)
H2A0.6915−0.17330.75420.175*
H2B0.6577−0.37370.75100.175*
H2C0.5318−0.23850.75520.175*
C30.6181 (5)−0.2437 (6)0.69566 (12)0.0810 (12)
H3A0.7146−0.26070.68380.097*
C40.5728 (4)−0.0080 (4)0.64580 (11)0.0602 (9)
C50.6698 (3)−0.0586 (4)0.61512 (10)0.0589 (9)
H5A0.7396−0.14150.62150.071*
C60.6637 (3)0.0134 (4)0.57479 (10)0.0543 (8)
H6A0.7297−0.02210.55430.065*
C70.5608 (3)0.1378 (4)0.56435 (9)0.0470 (8)
C80.4652 (4)0.1886 (5)0.59609 (12)0.0631 (10)
H8A0.39550.27220.59000.076*
C90.4712 (4)0.1183 (5)0.63610 (11)0.0680 (10)
H9A0.40690.15550.65690.082*
C100.6390 (3)0.2191 (4)0.49183 (10)0.0515 (8)
C110.5892 (4)0.3070 (5)0.45170 (11)0.0638 (10)
H11A0.66520.30470.43100.096*
H11B0.56380.42600.45780.096*
H11C0.50690.24640.44060.096*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.0428 (13)0.0549 (16)0.0572 (16)0.0014 (12)−0.0018 (11)0.0035 (13)
O10.119 (2)0.0703 (17)0.0608 (16)0.0233 (16)0.0052 (14)0.0019 (13)
O20.0471 (13)0.0715 (16)0.0808 (16)0.0047 (12)0.0103 (12)0.0115 (12)
C10.198 (6)0.092 (4)0.094 (4)−0.034 (4)0.005 (4)0.003 (3)
C20.168 (5)0.107 (4)0.074 (3)0.024 (4)0.001 (3)0.022 (3)
C30.096 (3)0.069 (2)0.078 (3)0.014 (2)0.008 (2)0.011 (2)
C40.076 (2)0.0508 (19)0.054 (2)0.0052 (19)−0.0027 (17)−0.0050 (16)
C50.061 (2)0.051 (2)0.065 (2)0.0133 (17)−0.0040 (16)0.0000 (17)
C60.0534 (18)0.0518 (19)0.058 (2)0.0022 (16)0.0051 (15)−0.0014 (16)
C70.0428 (15)0.0439 (17)0.0543 (19)−0.0027 (14)−0.0004 (13)−0.0027 (14)
C80.062 (2)0.057 (2)0.071 (2)0.0136 (17)0.0049 (17)0.0004 (18)
C90.076 (2)0.064 (2)0.063 (2)0.017 (2)0.0114 (17)−0.0049 (19)
C100.0486 (17)0.0420 (18)0.064 (2)−0.0084 (15)0.0008 (15)−0.0044 (15)
C110.061 (2)0.063 (2)0.067 (2)−0.0106 (18)−0.0042 (16)0.0080 (18)

Geometric parameters (Å, °)

N—C101.334 (4)C4—C51.375 (4)
N—C71.407 (4)C4—C91.385 (4)
N—H0A0.8600C5—C61.382 (4)
O1—C41.379 (4)C5—H5A0.9300
O1—C31.427 (5)C6—C71.389 (4)
O2—C101.234 (4)C6—H6A0.9300
C1—C31.487 (6)C7—C81.391 (4)
C1—H1A0.9600C8—C91.367 (5)
C1—H1B0.9600C8—H8A0.9300
C1—H1C0.9600C9—H9A0.9300
C2—C31.501 (5)C10—C111.501 (4)
C2—H2A0.9600C11—H11A0.9600
C2—H2B0.9600C11—H11B0.9600
C2—H2C0.9600C11—H11C0.9600
C3—H3A0.9800
C10—N—C7128.5 (3)C4—C5—C6120.2 (3)
C10—N—H0A115.7C4—C5—H5A119.9
C7—N—H0A115.7C6—C5—H5A119.9
C4—O1—C3119.5 (3)C5—C6—C7121.2 (3)
C3—C1—H1A109.5C5—C6—H6A119.4
C3—C1—H1B109.5C7—C6—H6A119.4
H1A—C1—H1B109.5C6—C7—C8117.6 (3)
C3—C1—H1C109.5C6—C7—N124.4 (3)
H1A—C1—H1C109.5C8—C7—N118.0 (3)
H1B—C1—H1C109.5C9—C8—C7121.5 (3)
C3—C2—H2A109.5C9—C8—H8A119.3
C3—C2—H2B109.5C7—C8—H8A119.3
H2A—C2—H2B109.5C8—C9—C4120.3 (3)
C3—C2—H2C109.5C8—C9—H9A119.9
H2A—C2—H2C109.5C4—C9—H9A119.9
H2B—C2—H2C109.5O2—C10—N122.7 (3)
O1—C3—C1111.3 (4)O2—C10—C11121.1 (3)
O1—C3—C2105.8 (3)N—C10—C11116.2 (3)
C1—C3—C2112.4 (4)C10—C11—H11A109.5
O1—C3—H3A109.1C10—C11—H11B109.5
C1—C3—H3A109.1H11A—C11—H11B109.5
C2—C3—H3A109.1C10—C11—H11C109.5
C5—C4—O1124.5 (3)H11A—C11—H11C109.5
C5—C4—C9119.3 (3)H11B—C11—H11C109.5
O1—C4—C9116.1 (3)
C4—O1—C3—C1−65.9 (5)C10—N—C7—C6−21.2 (5)
C4—O1—C3—C2171.7 (4)C10—N—C7—C8161.2 (3)
C3—O1—C4—C5−32.2 (5)C6—C7—C8—C9−0.4 (5)
C3—O1—C4—C9150.6 (4)N—C7—C8—C9177.4 (3)
O1—C4—C5—C6−178.5 (3)C7—C8—C9—C4−0.8 (5)
C9—C4—C5—C6−1.3 (5)C5—C4—C9—C81.7 (5)
C4—C5—C6—C70.2 (5)O1—C4—C9—C8179.0 (3)
C5—C6—C7—C80.7 (5)C7—N—C10—O20.6 (5)
C5—C6—C7—N−176.9 (3)C7—N—C10—C11−179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.012.869 (3)175
C6—H6A···O20.932.342.892 (4)118

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2659).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography