PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1012.
Published online 2009 April 10. doi:  10.1107/S1600536809013038
PMCID: PMC2977699

1-Furoyl-3-[3-(trifluoro­meth­yl)phen­yl]thio­urea

Abstract

The title compound, C13H9F3N2O2S, crystallizes with two independent mol­ecules in the asymmetric unit. The central thio­urea core is roughly coplanar with the furan and benzene rings, showing O—C—N—C(S) torsion angles of 2.3 (4) and −11.4 (2)° and (S)C—N—C—C torsion angles of −2.4 (4) and −28.8 (4)°, respectively, in the two independent mol­ecules. The transcis geometry of the thio­urea fragment is stabilized by an intra­molecular N—H(...)O hydrogen bond between the H atom of the cis thio­amide and the carbonyl O atom. In the crystal structure, inter­molecular N—H(...)S hydrogen bonds form centrosymmetric dimers extending along the b axis.

Related literature

For general background to aroylthio­ureas, see: Aly et al. (2007 [triangle]); Koch (2001 [triangle]); Estévez-Hernández et al. (2007 [triangle]); Otazo-Sánchez et al. (2002 [triangle]). For related structures, see: Theodoro et al. (2008 [triangle]); Pérez et al. (2008 [triangle]). For the synthesis, see: Otazo-Sánchez et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1012-scheme1.jpg

Experimental

Crystal data

  • C13H9F3N2O2S
  • M r = 314.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1012-efi1.jpg
  • a = 7.5540 (14) Å
  • b = 13.684 (5) Å
  • c = 14.210 (3) Å
  • α = 86.124 (13)°
  • β = 74.779 (7)°
  • γ = 74.065 (8)°
  • V = 1362.9 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 294 K
  • 0.09 × 0.07 × 0.03 mm

Data collection

  • Enraf–Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 9271 measured reflections
  • 4953 independent reflections
  • 2925 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.123
  • S = 1.01
  • 4953 reflections
  • 433 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013038/fj2202sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013038/fj2202Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Brazilian agency CNPq. OEH thanks CONACyT of Mexico for research grant No. 61541.

supplementary crystallographic information

Comment

The importance of aroylthioureas is found largely in heterocyclic syntheses and many of these substrates have interesting biological activities. Aroylthioureas have also been found to have applications in metal complexes and molecular electronics (Aly et al., 2007). The title compound (I), Fig. 1, was synthesized from furoyl isothiocyanate and 3-trifluorometylaniline in dry acetone. This thiourea derivative has been successfully used as ionophore in amperometric sensor for Cd(II) (Estévez-Hernández et al., 2007). The title compound crystallizes in the thioamide form with two independent molecules in the asymmetric unit. The main bond lengths are within the ranges obtained for similar compounds (Koch et al., 2001 and Pérez et al., 2008). The C2—S1 and C1—O1 bonds (Table 1) both show the expected double-bond character. The short values of the C2—N1, C2—N2 and C1—N2 bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The C=S distance for compound I (two unique molecules) averages 1.648 Å. The furan carbonyl (O1—C1—C3—O2 and O1a—C1a—C3a—O2a, two unique molecules) groups are inclined 2.3 (4)° and -11.4 (2)° with respect to the plane formed by the thiourea moiety (N1—C2—S1—N2 and N1a—C2a—S2—N2a, two unique molecules)in each molecule, while the 3-trifluoromethylphenyl (C7—C8—C9—C10—C11 and C7a—C8a—C9a—C10a—C11a, two unique molecules) rings are inclined -2.4 (4)° and -28.8 (4)°, respectively. In addition, the dihedral angles of two independent molecules between the furan and benzene ring planes are 18.91 (1)° and 14.78 (1)°, respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···.O1 intramolecular hydrogen bond. This strong interaction is also observed in solution (Otazo-Sánchez et al., 2002) and locks the –CONHCSNHR– unit into a stable planar six-membered ring structure (Fig.1 and Table 1). In this S-shaped conformation between the C=O and C=S groups (two donors sites rich in electron density), the O—S distance is maximum, contributing to a minimum conformational energy of the molecule as a whole (Koch et al., 2001). Another weaker intramolecular hydrogen interaction between the furan oxygen atom O2 and the N1—H1 hydrogen atom is observed. The crystal structure is stabilized by two intermolecular N1—H1···.S1 hydrogen bonds (Fig.2 and Table 1) between related molecules forming dimers pilled within the unit cell along the [010] direction.

Experimental

The title compound (I) was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with 3-trifluorometylaniline. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 112–113 °C). Elemental analysis (%) for C13H9N2O2F3S calculated: C 49.68, H 2.87, N 8.92, S 10.19; found: C 49.46, H 2.86, N 15.79, S 10.09.

Refinement

All H atoms were refined with Uiso(H)=1.2Ueq(C/N).

A disordered behavior was observed for the fluorine atoms. Their anisotropic thermal parameters are particularly high, for F1, F2 and F3, respectively. However they are too far from the thiourea core to induce any effect on its nucleophilic centers. The position that these fluorine atoms occupy, at the end of the molecule, favors the behavior observed. The C13A and C13 atoms of the trifluoromethyl groups also show a high anisotropic thermal parameter. This appears an effect induced by the fluorine atoms movement.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line. For clarity reason the atoms (C13, C13a, ...
Fig. 2.
View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H9F3N2O2SZ = 4
Mr = 314.29F(000) = 640
Triclinic, P1Dx = 1.532 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5540 (14) ÅCell parameters from 8001 reflections
b = 13.684 (5) Åθ = 2.9–26.7°
c = 14.210 (3) ŵ = 0.28 mm1
α = 86.124 (13)°T = 294 K
β = 74.779 (7)°Prism, colourless
γ = 74.065 (8)°0.09 × 0.07 × 0.03 mm
V = 1362.9 (6) Å3

Data collection

Enraf–Nonius KappaCCD diffractometer2925 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Enraf Nonius FR590Rint = 0.035
horizontally mounted graphite crystalθmax = 25.4°, θmin = 2.9°
[var phi] scans and ω scans winth κ offsetsh = −9→9
9271 measured reflectionsk = −16→16
4953 independent reflectionsl = −17→17

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044w = 1/[σ2(Fo2) + (0.058P)2 + 0.0881P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.14 e Å3
4953 reflectionsΔρmin = −0.24 e Å3
433 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.3542 (4)0.0592 (2)0.38462 (18)0.0710 (7)
C20.1946 (3)0.02259 (17)0.55546 (17)0.0645 (6)
C30.4502 (4)0.01038 (19)0.29077 (17)0.0710 (7)
C40.5248 (4)0.0463 (2)0.2042 (2)0.0936 (9)
H40.52810.11310.18950.112*
C50.5978 (5)−0.0373 (3)0.1393 (2)0.1019 (10)
H50.6575−0.0360.07330.122*
C60.5654 (5)−0.1173 (3)0.1899 (2)0.1062 (10)
H60.5997−0.18280.16470.127*
C70.0783 (3)0.17521 (17)0.66537 (17)0.0655 (6)
C8−0.0076 (4)0.13680 (18)0.75310 (17)0.0712 (6)
H8−0.01510.06990.75690.085*
C9−0.0816 (4)0.19813 (18)0.83429 (18)0.0707 (6)
C10−0.0735 (4)0.2979 (2)0.8295 (2)0.0869 (8)
H10−0.12380.3390.88490.104*
C110.0087 (4)0.3353 (2)0.7432 (2)0.0930 (9)
H110.01320.40280.73950.112*
C120.0852 (4)0.27506 (19)0.6615 (2)0.0782 (7)
H120.14220.30170.60310.094*
C13−0.1660 (6)0.1558 (3)0.9296 (2)0.0923 (9)
O10.3279 (3)0.15065 (15)0.39493 (13)0.0941 (6)
O20.4751 (3)−0.09106 (15)0.28394 (13)0.0929 (6)
N10.2953 (3)−0.00303 (14)0.45947 (13)0.0678 (5)
H10.3248−0.06650.4450.081*
N20.1654 (3)0.11989 (15)0.57768 (15)0.0745 (6)
H20.20790.15560.52930.089*
S10.12519 (11)−0.06681 (5)0.62741 (5)0.0817 (2)
F2−0.3379 (18)0.2058 (8)0.9735 (10)0.145 (5)0.6
F1−0.0713 (15)0.1517 (11)0.9950 (9)0.138 (4)0.6
F3−0.1806 (18)0.0624 (6)0.9246 (6)0.135 (4)0.6
F11−0.121 (4)0.1867 (19)1.0000 (13)0.206 (11)0.4
F21−0.356 (3)0.1899 (16)0.9474 (15)0.158 (8)0.4
F31−0.125 (3)0.0578 (8)0.9282 (11)0.161 (7)0.4
C1A0.0472 (3)0.6271 (2)0.62271 (17)0.0678 (6)
C2A0.2779 (3)0.65003 (18)0.46698 (16)0.0631 (6)
C3A−0.0434 (3)0.67263 (18)0.71851 (17)0.0677 (6)
C4A−0.1499 (4)0.6405 (2)0.79957 (19)0.0834 (8)
H4A−0.18810.58080.80670.1*
C5A−0.1920 (4)0.7148 (2)0.8713 (2)0.0939 (9)
H5A−0.26370.71360.93530.113*
C6A−0.1105 (4)0.7871 (2)0.8307 (2)0.0924 (9)
H6A−0.11610.84540.86260.111*
C7A0.4030 (3)0.49953 (18)0.35601 (16)0.0629 (6)
C8A0.4819 (3)0.54077 (18)0.26840 (17)0.0693 (6)
H8A0.45810.61090.26120.083*
C9A0.5957 (3)0.47733 (19)0.19206 (17)0.0673 (6)
C10A0.6284 (4)0.3734 (2)0.2009 (2)0.0793 (7)
H10A0.70440.33090.1490.095*
C11A0.5474 (4)0.3332 (2)0.2875 (2)0.0841 (8)
H11A0.56880.26320.29410.101*
C12A0.4355 (4)0.39553 (18)0.36399 (19)0.0724 (7)
H12A0.38070.36740.4220.087*
C13A0.6833 (5)0.5235 (3)0.1000 (2)0.0856 (8)
O1A0.0331 (3)0.54417 (14)0.60375 (13)0.0879 (6)
O2A−0.0178 (2)0.76400 (13)0.73597 (12)0.0789 (5)
N1A0.1507 (3)0.68170 (14)0.55649 (13)0.0672 (5)
H1A0.13450.74360.57260.081*
N2A0.2842 (3)0.55799 (14)0.43803 (13)0.0693 (5)
H2A0.20280.52990.47540.083*
S1A0.40615 (12)0.72621 (6)0.40944 (5)0.0884 (3)
F2A0.5546 (12)0.5748 (9)0.0533 (6)0.136 (3)0.6
F3A0.7983 (13)0.4580 (9)0.0347 (7)0.137 (5)0.6
F1A0.7723 (19)0.5875 (10)0.1111 (4)0.138 (4)0.6
F2B0.594 (3)0.6154 (10)0.0881 (10)0.157 (6)0.4
F1B0.8549 (18)0.5299 (15)0.1025 (12)0.171 (8)0.4
F3B0.710 (4)0.4729 (16)0.0251 (10)0.193 (9)0.4

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0753 (17)0.0767 (17)0.0623 (16)−0.0278 (13)−0.0144 (13)0.0109 (13)
C20.0713 (15)0.0653 (15)0.0570 (14)−0.0215 (12)−0.0131 (12)0.0013 (11)
C30.0786 (17)0.0744 (17)0.0596 (15)−0.0261 (13)−0.0130 (13)0.0086 (12)
C40.103 (2)0.098 (2)0.0745 (19)−0.0383 (17)−0.0082 (16)0.0213 (17)
C50.107 (2)0.133 (3)0.0561 (17)−0.032 (2)−0.0066 (16)0.0116 (19)
C60.128 (3)0.109 (2)0.0667 (19)−0.027 (2)−0.0025 (18)−0.0139 (18)
C70.0716 (16)0.0600 (14)0.0641 (15)−0.0196 (12)−0.0131 (12)−0.0012 (11)
C80.0893 (18)0.0601 (14)0.0639 (15)−0.0234 (13)−0.0149 (13)−0.0012 (12)
C90.0757 (17)0.0664 (16)0.0665 (16)−0.0149 (12)−0.0150 (13)−0.0047 (12)
C100.098 (2)0.0719 (18)0.082 (2)−0.0179 (15)−0.0083 (16)−0.0175 (14)
C110.114 (2)0.0604 (16)0.098 (2)−0.0283 (15)−0.0061 (18)−0.0100 (15)
C120.0861 (19)0.0638 (16)0.0819 (18)−0.0268 (13)−0.0108 (14)0.0053 (13)
C130.109 (3)0.089 (2)0.068 (2)−0.020 (2)−0.008 (2)−0.0094 (17)
O10.1232 (16)0.0742 (12)0.0787 (13)−0.0397 (11)−0.0029 (11)0.0077 (9)
O20.1157 (16)0.0851 (13)0.0658 (12)−0.0288 (11)−0.0009 (10)0.0022 (9)
N10.0818 (14)0.0638 (12)0.0560 (12)−0.0253 (10)−0.0094 (10)0.0037 (9)
N20.0982 (16)0.0621 (12)0.0620 (13)−0.0322 (11)−0.0071 (11)0.0015 (10)
S10.1117 (6)0.0647 (4)0.0625 (4)−0.0339 (4)−0.0004 (4)−0.0005 (3)
F20.136 (8)0.138 (5)0.089 (5)0.021 (5)0.031 (4)0.016 (4)
F10.163 (4)0.182 (10)0.086 (5)−0.060 (4)−0.054 (3)0.026 (5)
F30.207 (8)0.123 (7)0.074 (3)−0.091 (6)0.020 (3)−0.015 (3)
F110.41 (3)0.196 (16)0.067 (6)−0.151 (18)−0.075 (12)0.003 (7)
F210.113 (8)0.227 (14)0.118 (12)−0.063 (8)0.011 (7)0.006 (8)
F310.217 (12)0.073 (7)0.106 (8)0.011 (6)0.045 (6)0.038 (5)
C1A0.0672 (16)0.0751 (16)0.0594 (14)−0.0291 (13)−0.0031 (12)0.0023 (12)
C2A0.0668 (15)0.0703 (15)0.0507 (13)−0.0261 (12)−0.0040 (11)−0.0008 (11)
C3A0.0679 (16)0.0687 (15)0.0607 (15)−0.0226 (12)−0.0024 (12)0.0025 (12)
C4A0.0832 (19)0.0805 (17)0.0715 (17)−0.0252 (14)0.0075 (14)0.0086 (14)
C5A0.103 (2)0.094 (2)0.0589 (16)−0.0181 (17)0.0139 (15)0.0060 (15)
C6A0.110 (2)0.091 (2)0.0592 (17)−0.0194 (17)0.0034 (15)−0.0131 (14)
C7A0.0622 (14)0.0672 (15)0.0573 (14)−0.0245 (11)−0.0042 (11)−0.0004 (11)
C8A0.0800 (17)0.0635 (15)0.0594 (14)−0.0247 (13)−0.0023 (12)−0.0035 (11)
C9A0.0635 (15)0.0742 (16)0.0630 (15)−0.0253 (12)−0.0045 (12)−0.0073 (12)
C10A0.0750 (18)0.0735 (17)0.0778 (18)−0.0154 (14)−0.0004 (14)−0.0146 (14)
C11A0.0845 (19)0.0595 (15)0.101 (2)−0.0181 (14)−0.0119 (16)−0.0042 (15)
C12A0.0759 (17)0.0647 (16)0.0743 (17)−0.0261 (13)−0.0091 (13)0.0072 (13)
C13A0.091 (2)0.095 (2)0.0635 (19)−0.031 (2)0.0036 (17)−0.0125 (17)
O1A0.1020 (14)0.0825 (12)0.0745 (12)−0.0487 (11)0.0130 (10)−0.0082 (9)
O2A0.0917 (13)0.0776 (11)0.0596 (10)−0.0294 (9)0.0022 (9)−0.0031 (8)
N1A0.0781 (13)0.0646 (12)0.0553 (11)−0.0304 (10)0.0014 (10)−0.0011 (9)
N2A0.0778 (13)0.0687 (13)0.0573 (12)−0.0334 (10)0.0050 (10)−0.0022 (10)
S1A0.1139 (6)0.0870 (5)0.0643 (4)−0.0586 (4)0.0135 (4)−0.0097 (3)
F2A0.133 (4)0.177 (9)0.094 (4)−0.046 (6)−0.026 (4)0.039 (5)
F3A0.149 (5)0.118 (4)0.096 (6)−0.033 (4)0.059 (5)−0.031 (4)
F1A0.197 (9)0.189 (8)0.072 (2)−0.150 (7)−0.003 (5)−0.005 (4)
F2B0.178 (14)0.104 (6)0.094 (7)0.020 (7)0.056 (7)0.040 (5)
F1B0.106 (6)0.248 (17)0.164 (11)−0.091 (8)−0.016 (5)0.084 (11)
F3B0.35 (2)0.20 (2)0.059 (5)−0.14 (2)−0.011 (11)−0.030 (7)

Geometric parameters (Å, °)

C1—O11.224 (3)C1A—O1A1.223 (3)
C1—N11.376 (3)C1A—N1A1.376 (3)
C1—C31.448 (3)C1A—C3A1.449 (3)
C2—N21.334 (3)C2A—N2A1.336 (3)
C2—N11.391 (3)C2A—N1A1.390 (3)
C2—S11.649 (2)C2A—S1A1.648 (2)
C3—C41.333 (3)C3A—C4A1.344 (3)
C3—O21.355 (3)C3A—O2A1.365 (3)
C4—C51.412 (4)C4A—C5A1.401 (4)
C4—H40.93C4A—H4A0.93
C5—C61.312 (4)C5A—C6A1.328 (4)
C5—H50.93C5A—H5A0.93
C6—O21.354 (3)C6A—O2A1.357 (3)
C6—H60.93C6A—H6A0.93
C7—C121.379 (3)C7A—C12A1.378 (3)
C7—C81.388 (3)C7A—C8A1.387 (3)
C7—N21.408 (3)C7A—N2A1.409 (3)
C8—C91.372 (3)C8A—C9A1.377 (3)
C8—H80.93C8A—H8A0.93
C9—C101.380 (4)C9A—C10A1.379 (3)
C9—C131.490 (4)C9A—C13A1.487 (4)
C10—C111.357 (4)C10A—C11A1.374 (4)
C10—H100.93C10A—H10A0.93
C11—C121.371 (4)C11A—C12A1.368 (4)
C11—H110.93C11A—H11A0.93
C12—H120.93C12A—H12A0.93
C13—F21.299 (12)C13A—F1A1.281 (7)
C13—F11.303 (11)C13A—F3A1.296 (9)
C13—F31.322 (8)C13A—F2A1.335 (8)
N1—H10.86N1A—H1A0.86
N2—H20.86N2A—H2A0.86
O1—C1—N1123.1 (2)O1A—C1A—N1A122.9 (2)
O1—C1—C3121.0 (2)O1A—C1A—C3A120.9 (2)
N1—C1—C3116.0 (2)N1A—C1A—C3A116.2 (2)
N2—C2—N1114.0 (2)N2A—C2A—N1A114.75 (19)
N2—C2—S1127.68 (18)N2A—C2A—S1A127.02 (17)
N1—C2—S1118.35 (17)N1A—C2A—S1A118.22 (18)
C4—C3—O2109.7 (2)C4A—C3A—O2A109.9 (2)
C4—C3—C1132.1 (3)C4A—C3A—C1A132.0 (2)
O2—C3—C1118.2 (2)O2A—C3A—C1A118.1 (2)
C3—C4—C5106.4 (3)C3A—C4A—C5A106.5 (2)
C3—C4—H4126.8C3A—C4A—H4A126.8
C5—C4—H4126.8C5A—C4A—H4A126.8
C6—C5—C4107.0 (3)C6A—C5A—C4A107.2 (2)
C6—C5—H5126.5C6A—C5A—H5A126.4
C4—C5—H5126.5C4A—C5A—H5A126.4
C5—C6—O2110.4 (3)C5A—C6A—O2A110.5 (3)
C5—C6—H6124.8C5A—C6A—H6A124.8
O2—C6—H6124.8O2A—C6A—H6A124.8
C12—C7—C8119.0 (2)C12A—C7A—C8A119.2 (2)
C12—C7—N2115.4 (2)C12A—C7A—N2A116.9 (2)
C8—C7—N2125.5 (2)C8A—C7A—N2A123.9 (2)
C9—C8—C7119.6 (2)C9A—C8A—C7A119.7 (2)
C9—C8—H8120.2C9A—C8A—H8A120.2
C7—C8—H8120.2C7A—C8A—H8A120.2
C8—C9—C10120.8 (2)C8A—C9A—C10A120.8 (2)
C8—C9—C13119.8 (2)C8A—C9A—C13A118.5 (2)
C10—C9—C13119.4 (3)C10A—C9A—C13A120.7 (2)
C11—C10—C9119.2 (3)C11A—C10A—C9A119.2 (2)
C11—C10—H10120.4C11A—C10A—H10A120.4
C9—C10—H10120.4C9A—C10A—H10A120.4
C10—C11—C12120.9 (3)C12A—C11A—C10A120.5 (2)
C10—C11—H11119.6C12A—C11A—H11A119.7
C12—C11—H11119.6C10A—C11A—H11A119.7
C11—C12—C7120.4 (3)C11A—C12A—C7A120.7 (2)
C11—C12—H12119.8C11A—C12A—H12A119.6
C7—C12—H12119.8C7A—C12A—H12A119.6
F2—C13—F1103.4 (9)F1A—C13A—F3A107.4 (7)
F2—C13—F3103.2 (9)F1A—C13A—F2A104.8 (6)
F1—C13—F3104.9 (8)F3A—C13A—F2A102.3 (6)
F2—C13—C9115.6 (5)F1A—C13A—C9A114.6 (4)
F1—C13—C9114.0 (6)F3A—C13A—C9A114.2 (6)
F3—C13—C9114.4 (5)F2A—C13A—C9A112.4 (4)
C6—O2—C3106.6 (2)C6A—O2A—C3A106.0 (2)
C1—N1—C2128.9 (2)C1A—N1A—C2A128.6 (2)
C1—N1—H1115.6C1A—N1A—H1A115.7
C2—N1—H1115.6C2A—N1A—H1A115.7
C2—N2—C7132.2 (2)C2A—N2A—C7A130.37 (19)
C2—N2—H2113.9C2A—N2A—H2A114.8
C7—N2—H2113.9C7A—N2A—H2A114.8
O1—C1—C3—C40.4 (5)O1A—C1A—C3A—C4A0.3 (5)
N1—C1—C3—C4−179.9 (3)N1A—C1A—C3A—C4A−178.7 (3)
O1—C1—C3—O2180.0 (2)O1A—C1A—C3A—O2A178.2 (2)
N1—C1—C3—O2−0.3 (3)N1A—C1A—C3A—O2A−0.8 (3)
O2—C3—C4—C50.9 (3)O2A—C3A—C4A—C5A−0.4 (3)
C1—C3—C4—C5−179.4 (3)C1A—C3A—C4A—C5A177.6 (3)
C3—C4—C5—C6−0.7 (4)C3A—C4A—C5A—C6A0.1 (4)
C4—C5—C6—O20.2 (4)C4A—C5A—C6A—O2A0.2 (4)
C12—C7—C8—C9−0.8 (4)C12A—C7A—C8A—C9A−1.9 (4)
N2—C7—C8—C9177.7 (2)N2A—C7A—C8A—C9A−179.7 (2)
C7—C8—C9—C100.7 (4)C7A—C8A—C9A—C10A1.6 (4)
C7—C8—C9—C13−177.2 (3)C7A—C8A—C9A—C13A−178.1 (3)
C8—C9—C10—C110.1 (4)C8A—C9A—C10A—C11A−0.6 (4)
C13—C9—C10—C11178.0 (3)C13A—C9A—C10A—C11A179.1 (3)
C9—C10—C11—C12−0.8 (5)C9A—C10A—C11A—C12A0.1 (4)
C10—C11—C12—C70.7 (5)C10A—C11A—C12A—C7A−0.5 (4)
C8—C7—C12—C110.1 (4)C8A—C7A—C12A—C11A1.4 (4)
N2—C7—C12—C11−178.5 (3)N2A—C7A—C12A—C11A179.3 (2)
C8—C9—C13—F2−126.8 (9)C8A—C9A—C13A—F1A51.0 (9)
C10—C9—C13—F255.2 (10)C10A—C9A—C13A—F1A−128.7 (9)
C8—C9—C13—F1113.5 (7)C8A—C9A—C13A—F3A175.5 (6)
C10—C9—C13—F1−64.4 (8)C10A—C9A—C13A—F3A−4.2 (7)
C8—C9—C13—F3−7.2 (7)C8A—C9A—C13A—F2A−68.5 (7)
C10—C9—C13—F3174.9 (6)C10A—C9A—C13A—F2A111.8 (7)
C5—C6—O2—C30.4 (4)C5A—C6A—O2A—C3A−0.4 (3)
C4—C3—O2—C6−0.8 (3)C4A—C3A—O2A—C6A0.5 (3)
C1—C3—O2—C6179.4 (2)C1A—C3A—O2A—C6A−177.8 (2)
O1—C1—N1—C22.3 (4)O1A—C1A—N1A—C2A−11.4 (4)
C3—C1—N1—C2−177.4 (2)C3A—C1A—N1A—C2A167.5 (2)
N2—C2—N1—C1−5.4 (4)N2A—C2A—N1A—C1A7.6 (4)
S1—C2—N1—C1174.32 (19)S1A—C2A—N1A—C1A−171.20 (19)
N1—C2—N2—C7−177.3 (2)N1A—C2A—N2A—C7A−175.4 (2)
S1—C2—N2—C73.0 (4)S1A—C2A—N2A—C7A3.3 (4)
C12—C7—N2—C2176.1 (3)C12A—C7A—N2A—C2A153.4 (2)
C8—C7—N2—C2−2.4 (4)C8A—C7A—N2A—C2A−28.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···S1Ai0.862.783.643 (2)176
N1—H1···O20.862.272.692 (3)110
N1A—H1A···S1ii0.862.743.592 (2)173
N1A—H1A···O2A0.862.302.700 (3)108
N2—H2···O10.861.882.625 (3)144
N2A—H2A···O1A0.861.922.640 (3)140

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2202).

References

  • Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem.28, 73–93.
  • Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488–494.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koch, K. R. (2001). Coord. Chem. Rev.216–217, 473–488.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otazo-Sánchez, E., Ortiz-del Toro, P., Estévez-Hernández, O., Pérez-Marín, L., Goicoechea, I., Cerón-Beltrán, A. & Villagómez-Ibarra, J. R. (2002). Spectrochim. Acta [A], 58, 2281–2290. [PubMed]
  • Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamarro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o513. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Theodoro, J. E., Mascarenhas, Y., Ellena, J., Estévez-Hernández, O. & Duque, J. (2008). Acta Cryst. E64, o1193. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography