PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1011.
Published online 2009 April 8. doi:  10.1107/S1600536809012999
PMCID: PMC2977698

2-[(E)-3-Phenyl­prop-2-en­yl]-1,2-benzisothia­zol-3(2H)-one 1,1-dioxide

Abstract

In the crystal structure of the title compound, C16H13NO3S, the benzisothia­zole group is almost planar (r.m.s. deviation for all non-H atoms excluding the two O atoms bonded to S = 0.009 Å). The dihedral angle between the fused ring and the terminal ring is 13.8 (1)°. In the crystal, mol­ecules are linked through inter­molecular C—H(...)O contacts forming a chain of mol­ecules along b.

Related literature

For the synthesis of benzothia­zine and benzisothia­zol derivatives, see: Zia-ur-Rehman et al. (2006 [triangle], 2009 [triangle]); Siddiqui et al. (2008 [triangle]). For the biological activity of benzisothia­zols, see: Kapui et al. (2003 [triangle]); Liang et al. (2006 [triangle]). For related structures, see: Siddiqui et al. (2006 [triangle], 2007a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1011-scheme1.jpg

Experimental

Crystal data

  • C16H13NO3S
  • M r = 299.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1011-efi1.jpg
  • a = 6.9375 (5) Å
  • b = 7.1579 (4) Å
  • c = 29.673 (2) Å
  • β = 96.160 (4)°
  • V = 1464.99 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 296 K
  • 0.39 × 0.11 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 8250 measured reflections
  • 3606 independent reflections
  • 1722 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.178
  • S = 0.96
  • 3606 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SMART (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809012999/bt2924sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012999/bt2924Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for a grant for the purchase of diffractometer.

supplementary crystallographic information

Comment

Benzisothiazolone-1,1-dioxide and its various derivatives are well known as biologically active compounds e.g., saccharin has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). Few of its derivatives are considered to be the most potent orally active human leucocyte elastase (HLE) inhibitors for the treatment ofchronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), cystic fibrosis, asthma and other inflammatory diseases (Kapui et al., 2003). Its N-alkyl derivatives have been successfully transformed to non-steroidal anti-inflammatory drugs e.g., piroxicam (Zia-ur-Rehman et al., 2006).

In continuation to our research on the synthesis of 1,2-benzothiazine 1,1-dioxide derivatives (Zia-ur-Rehman et al., 2009; Zia-ur-Rehman et al., 2006), we have in addtion, worked on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2006; Siddiqui et al., 2008). Herein, crystal structure of the title compound (I) is described. The benzisothiazole moiety is exactly planar.The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui et al., 2007a-c). Each molecule is linked to its adjacent one through C—H···O contacts forming a chain of molecules along b.

Experimental

A mixture of 2,3-dihydro-1,2-benzisothiazol-3-one-1,1-dioxide (1.83 g, 10.0 mmoles), dimethyl formamide (5.0 ml) and cinnamyl chloride (1.67 g, 10.0 mmoles) was stirred for a period of three hours at 90°C. Contents were cooled to room temperature; poured over crushed ice to get white coloured precipitates which were filtered, washed and dried. Crystallization of the white precipitates (in methanol) afforded suitable crystals for X-ray studies after recrystalization in methanol.

Refinement

H atoms bound to C were placed in geometric positions (C—H distance = 0.93 to 0.96 Å) using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(C methyl).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Perspective view of the crystal packing showing inter molecular C—H···O interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C16H13NO3SF(000) = 624
Mr = 299.33Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1453 reflections
a = 6.9375 (5) Åθ = 2.8–20.7°
b = 7.1579 (4) ŵ = 0.23 mm1
c = 29.673 (2) ÅT = 296 K
β = 96.160 (4)°Needles, white
V = 1464.99 (17) Å30.39 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer1722 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
graphiteθmax = 28.3°, θmin = 1.4°
[var phi] and ω scansh = −9→8
8250 measured reflectionsk = −8→9
3606 independent reflectionsl = −35→39

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.0875P)2] where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.25184 (11)−0.21860 (10)0.08353 (3)0.0673 (3)
O10.2457 (3)0.2827 (3)0.05026 (8)0.0871 (7)
O20.4314 (3)−0.2892 (3)0.10446 (8)0.0937 (8)
O30.0787 (3)−0.2970 (3)0.09666 (7)0.0909 (7)
N10.2464 (3)0.0118 (3)0.09024 (7)0.0634 (6)
C10.2500 (4)−0.1992 (4)0.02512 (9)0.0552 (7)
C20.2505 (4)−0.3412 (4)−0.00625 (12)0.0800 (9)
H20.2512−0.46610.00250.096*
C30.2499 (5)−0.2902 (6)−0.05133 (12)0.0914 (11)
H30.2495−0.3827−0.07330.110*
C40.2498 (4)−0.1074 (6)−0.06412 (11)0.0805 (9)
H40.2496−0.0775−0.09460.097*
C50.2501 (4)0.0333 (5)−0.03269 (10)0.0654 (8)
H50.25000.1578−0.04160.078*
C60.2506 (3)−0.0140 (4)0.01241 (8)0.0532 (6)
C70.2488 (4)0.1141 (4)0.05129 (10)0.0609 (7)
C80.2380 (4)0.0994 (5)0.13459 (10)0.0799 (9)
H8A0.15910.02300.15240.096*
H8B0.17620.22060.13040.096*
C90.4368 (4)0.1238 (5)0.16027 (10)0.0735 (8)
H90.49490.01930.17460.088*
C100.5312 (5)0.2786 (4)0.16377 (9)0.0700 (8)
H100.47040.38260.14990.084*
C110.7266 (4)0.3074 (4)0.18770 (9)0.0603 (7)
C120.8373 (5)0.4574 (4)0.17645 (9)0.0768 (9)
H120.78710.54160.15440.092*
C131.0228 (5)0.4829 (5)0.19796 (11)0.0834 (10)
H131.09820.58210.18970.100*
C141.0949 (5)0.3626 (5)0.23127 (12)0.0838 (10)
H141.21930.38010.24570.101*
C150.9854 (5)0.2174 (5)0.24335 (11)0.0799 (9)
H151.03370.13750.26660.096*
C160.8052 (5)0.1884 (4)0.22158 (10)0.0745 (9)
H160.73320.08650.22960.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0771 (6)0.0647 (5)0.0584 (5)0.0005 (4)−0.0004 (4)0.0158 (4)
O10.1019 (17)0.0544 (13)0.1044 (19)0.0035 (11)0.0083 (13)0.0060 (11)
O20.1041 (17)0.0869 (15)0.0828 (16)0.0187 (12)−0.0234 (13)0.0209 (12)
O30.1006 (17)0.0970 (17)0.0785 (16)−0.0211 (12)0.0253 (13)0.0253 (12)
N10.0710 (15)0.0670 (15)0.0509 (14)0.0007 (11)0.0009 (11)0.0008 (11)
C10.0510 (15)0.0568 (16)0.0570 (16)−0.0012 (11)0.0015 (13)0.0099 (13)
C20.098 (2)0.0619 (19)0.080 (2)−0.0007 (16)0.0071 (19)−0.0011 (17)
C30.104 (3)0.107 (3)0.064 (2)0.004 (2)0.013 (2)−0.014 (2)
C40.067 (2)0.113 (3)0.062 (2)0.0019 (18)0.0115 (16)0.012 (2)
C50.0494 (16)0.081 (2)0.0669 (19)0.0027 (14)0.0093 (14)0.0217 (17)
C60.0398 (14)0.0625 (17)0.0572 (16)0.0007 (11)0.0043 (12)0.0131 (13)
C70.0500 (16)0.0592 (19)0.073 (2)0.0009 (12)0.0023 (14)0.0112 (15)
C80.072 (2)0.100 (2)0.068 (2)−0.0014 (17)0.0060 (16)−0.0131 (17)
C90.082 (2)0.079 (2)0.0603 (19)0.0036 (17)0.0112 (16)0.0005 (15)
C100.084 (2)0.074 (2)0.0532 (18)0.0113 (17)0.0096 (16)0.0003 (14)
C110.0657 (18)0.0722 (19)0.0438 (15)0.0036 (14)0.0103 (14)−0.0014 (13)
C120.106 (3)0.076 (2)0.0497 (17)−0.0063 (18)0.0141 (17)0.0012 (15)
C130.100 (3)0.089 (2)0.065 (2)−0.0285 (19)0.0236 (19)−0.0086 (18)
C140.067 (2)0.115 (3)0.069 (2)−0.0069 (19)0.0076 (17)−0.012 (2)
C150.073 (2)0.095 (2)0.070 (2)0.0056 (18)0.0020 (18)0.0096 (18)
C160.073 (2)0.078 (2)0.072 (2)−0.0025 (15)0.0068 (17)0.0110 (16)

Geometric parameters (Å, °)

S1—O31.418 (2)C8—C91.512 (4)
S1—O21.424 (2)C8—H8A0.9700
S1—N11.662 (2)C8—H8B0.9700
S1—C11.738 (3)C9—C101.286 (4)
O1—C71.207 (3)C9—H90.9300
N1—C71.370 (3)C10—C111.476 (4)
N1—C81.464 (3)C10—H100.9300
C1—C61.378 (3)C11—C121.382 (4)
C1—C21.378 (4)C11—C161.384 (4)
C2—C31.387 (4)C12—C131.386 (4)
C2—H20.9300C12—H120.9300
C3—C41.362 (5)C13—C141.365 (4)
C3—H30.9300C13—H130.9300
C4—C51.372 (4)C14—C151.358 (4)
C4—H40.9300C14—H140.9300
C5—C61.380 (3)C15—C161.360 (4)
C5—H50.9300C15—H150.9300
C6—C71.475 (4)C16—H160.9300
O3—S1—O2117.84 (14)N1—C8—C9112.4 (2)
O3—S1—N1109.21 (13)N1—C8—H8A109.1
O2—S1—N1109.29 (12)C9—C8—H8A109.1
O3—S1—C1112.95 (13)N1—C8—H8B109.1
O2—S1—C1112.08 (14)C9—C8—H8B109.1
N1—S1—C192.43 (12)H8A—C8—H8B107.9
C7—N1—C8122.3 (3)C10—C9—C8124.7 (3)
C7—N1—S1115.28 (19)C10—C9—H9117.7
C8—N1—S1122.4 (2)C8—C9—H9117.7
C6—C1—C2121.6 (3)C9—C10—C11126.3 (3)
C6—C1—S1110.5 (2)C9—C10—H10116.8
C2—C1—S1127.9 (2)C11—C10—H10116.8
C1—C2—C3117.2 (3)C12—C11—C16117.9 (3)
C1—C2—H2121.4C12—C11—C10119.8 (3)
C3—C2—H2121.4C16—C11—C10122.3 (3)
C4—C3—C2121.5 (3)C11—C12—C13120.3 (3)
C4—C3—H3119.3C11—C12—H12119.9
C2—C3—H3119.3C13—C12—H12119.9
C3—C4—C5121.0 (3)C14—C13—C12120.0 (3)
C3—C4—H4119.5C14—C13—H13120.0
C5—C4—H4119.5C12—C13—H13120.0
C4—C5—C6118.6 (3)C15—C14—C13120.1 (3)
C4—C5—H5120.7C15—C14—H14119.9
C6—C5—H5120.7C13—C14—H14119.9
C1—C6—C5120.1 (3)C14—C15—C16120.2 (3)
C1—C6—C7112.6 (2)C14—C15—H15119.9
C5—C6—C7127.3 (3)C16—C15—H15119.9
O1—C7—N1123.6 (3)C15—C16—C11121.5 (3)
O1—C7—C6127.1 (3)C15—C16—H16119.3
N1—C7—C6109.2 (2)C11—C16—H16119.3
O3—S1—N1—C7−117.2 (2)C8—N1—C7—O10.6 (4)
O2—S1—N1—C7112.6 (2)S1—N1—C7—O1−179.9 (2)
C1—S1—N1—C7−1.9 (2)C8—N1—C7—C6−178.0 (2)
O3—S1—N1—C862.3 (2)S1—N1—C7—C61.5 (3)
O2—S1—N1—C8−67.9 (2)C1—C6—C7—O1−178.7 (3)
C1—S1—N1—C8177.7 (2)C5—C6—C7—O10.4 (4)
O3—S1—C1—C6113.7 (2)C1—C6—C7—N1−0.2 (3)
O2—S1—C1—C6−110.3 (2)C5—C6—C7—N1178.9 (2)
N1—S1—C1—C61.6 (2)C7—N1—C8—C9−94.9 (3)
O3—S1—C1—C2−67.1 (3)S1—N1—C8—C985.6 (3)
O2—S1—C1—C268.9 (3)N1—C8—C9—C10101.9 (4)
N1—S1—C1—C2−179.2 (3)C8—C9—C10—C11−178.7 (3)
C6—C1—C2—C3−0.5 (4)C9—C10—C11—C12157.8 (3)
S1—C1—C2—C3−179.6 (2)C9—C10—C11—C16−22.3 (5)
C1—C2—C3—C40.3 (5)C16—C11—C12—C131.6 (4)
C2—C3—C4—C5−0.1 (5)C10—C11—C12—C13−178.4 (3)
C3—C4—C5—C60.0 (4)C11—C12—C13—C14−1.8 (5)
C2—C1—C6—C50.5 (4)C12—C13—C14—C150.1 (5)
S1—C1—C6—C5179.73 (19)C13—C14—C15—C161.6 (5)
C2—C1—C6—C7179.7 (2)C14—C15—C16—C11−1.8 (5)
S1—C1—C6—C7−1.1 (3)C12—C11—C16—C150.1 (4)
C4—C5—C6—C1−0.2 (4)C10—C11—C16—C15−179.8 (3)
C4—C5—C6—C7−179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.293.174 (4)158

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2924).

References

  • Bruker (2007). APEX2, SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther.305, 1–9. [PubMed]
  • Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst E64, o724. [PMC free article] [PubMed]
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.
  • Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak 28, 583–589.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography