PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o1009–o1010.
Published online 2009 April 8. doi:  10.1107/S1600536809012677
PMCID: PMC2977697

N′-[(2Z)-3-Allyl-4-oxo-1,3-thia­zolidin-2-yl­idene]-5-fluoro-3-phenyl-1H-indole-2-carbohydrazide

Abstract

In the title compound, C21H17FN4O2S, the planar indole fused-ring [maximum deviation 0.009 (1) Å] makes dihedral angles of 54.75 (9) and 14.90 (9)°, respectively, with the phenyl ring and the dihydro­thia­zolyl ring. The –CH2CH=CH2 substituent is disordered over two positions in a 0.51 (1):0.49 (1) ratio. An intra­molecular N—H(...)S hydrogen bond generates an S(5) ring motif. The two independent mol­ecules are linked into a dimer by two N—H(...)O hydrogen bonds, forming an R 2 2(10) ring motif. The crystal structure features inter­molecular C—H(...)π and π–π stacking [centroid–centroid distance = 3.679 (1) Å] inter­actions. C—H(...)O and C—H(...)F inter­actions are also present.

Related literature

For the bactericidal, fungicidal, antitubercular and anticancer properties of 4-thia­zolidinone derivatives, see: Bonde & Gaikwad (2004 [triangle]); Güzel et al. (2006 [triangle]); Küçükgüzel et al. (2002 [triangle]); Kline et al. (2008 [triangle]); Ottanà et al. (2005 [triangle]); Ulusoy (2002 [triangle]); Zhou et al. (2008 [triangle]); Çapan et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1009-scheme1.jpg

Experimental

Crystal data

  • C21H17FN4O2S
  • M r = 408.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1009-efi3.jpg
  • a = 21.9754 (6) Å
  • b = 14.7215 (5) Å
  • c = 16.2447 (4) Å
  • β = 132.022 (2)°
  • V = 3904.1 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 296 K
  • 0.48 × 0.45 × 0.41 mm

Data collection

  • Stoe IPDS2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.910, T max = 0.922
  • 27187 measured reflections
  • 4444 independent reflections
  • 3438 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.111
  • S = 1.04
  • 4444 reflections
  • 302 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012677/ng2568sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012677/ng2568Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Efforts to design, synthesize and screen new molecules that would mimic the actions of currently available chemotherapeutics have resulted in numerous promising candidates incorporating the 4-thiazolidinone system. Many 4-thiazolidinone derivatives have been shown to exhibit bactericidal (Bonde & Gaikwad, 2004; Kline et al., 2008), fungicidal (Çapan et al., 1999) antitubercular (Ulusoy, 2002; Küçükgüzel et al., 2002; Güzel et al., 2006) and anticancer (Zhou et al., 2008) properties. Furthermore the structure of 4-thiazolidinones obtained from asymmetric thiourea derivatives has been frequently discussed due to the formation of regio-isomers involving 2- and 3-positions of the thiazolidinone ring depending upon the relative nucleophilic strengths of the thioamide N atoms (Ottanà et al., 2005; Kline et al., 2008). The nitrogen involved in ene-thiolization (R1N1=CSH—N2HR2/R1N1HCSH=N2R2) determines the regiochemical outcome of the cyclization. In this context, the title compound (2) was prepared from a thiosemicarbazide precursor (1) which may be regarded as an asymmetric thiourea analogue in an attempt to obtain a new molecule with antimicrobial action and to establish its definite structure. Thus spectroscopic and X-ray diffraction studies were carried out on (2) to determine the position of the 5-fluoro-3-phenyl-2-indolylcarbonylamino residue and the geometry about the C=N double bond.

In the title compound, (2), (Fig. 1), 1H-indole ring is essentially planar, with a maximum deviation of -0.009 (1) Å for C8. The nine-membered indole ring makes dihedral angles of 54.75 (9) and 14.90 (9) °, respectively, with the phenyl ring (C9–C14) and the 2,5-dihydro-1,3-thiazole ring (S1/N4/C16–C18). The dihedral angle between the (C9–C14) and (S1/N4/C16–C18) rings is 69.15 (9)°.

In the molecule, intramolecular N—H···S hydrogen bonding interactions generate S(5) ring motifs. In the crystal, the two independent molecules are linked into a dimer by two N—H···O hydrogen bonds, forming a R22(10) ring motif (Fig. 2). The crystal structure, is further stabilized by intermolecular C—H···π [Cg1 and Cg2 are centroids of the S1/N4/C16–C18 and N1/C1/C6–C8 rings, respectively (Table 1)] and π–π interactions [Cg1···Cg2(x, -y, 1/2 + z) = 3.6791 (10) Å].

Experimental

A mixture of 4-allyl-1-[(5-fluoro-3-phenyl-1H-indol-2-yl)carbonyl]-3-\ thiosemicarbazide (1) (0.0025 mol), ethyl bromoacetate (0.0025 mol) and fused sodium acetate (0.01 mol) in absolute ethanol (15 ml) was heated under reflux for 3 h. The solid thus obtained (2) was filtered, dried and purified by recrystallization from a mixture of ethanol: chloroform [Yield: 63.7%, m.p.: 535–538 K]. IR (KBr) ν = 3309, 3247 (N—H), 1716 (C=O), 1654 (C=O), 1608 (C=N) cm-1; 1H-NMR (DMSO-d6, 500 MHz) δ = 4.05 (2H, s, S—CH2), 4.24 (2H, s*, N—CH2CH=CH2), 5.12 (2H, s*, N—CH2CH=CH2), 5.81 (1H, s*, N—CH2CH=CH2), 7.11 (1H, dt, J = 9.1, 2.4 Hz, H6-indole), 7.15 (1H, d*, J = 9.3 Hz, H4-indole), 7.36 (1H, s*, 3-C6H5 (H4)-indole), 7.49–7.46 (5H, m, H7, 3-C6H5 (H2, H6, H3, H5)-indole), 9.78 (1H, s, CONH), 11.87 (1H, s, NH-indole) p.p.m. (* = broad). Analysis calculated for C21H17FN4O2S: C 61.75, H 4.20, N 13.72%. Found: C 61.84, H4.87, N 13.69%.

Refinement

The two H atoms of the C19 atom were found from a difference Fourier map and refined freely. The rest H atoms were positioned geometrically and refined a riding model, with N—H = 0.86, C—H = 0.93 and 0.97 Å, and with Uiso(H) = 1.2Ueq(C,N). The site-occupation factors of the disordered atoms refined to 0.487 (13) for C20A and C21A and 0.513 (13) for C20B and C21B.

Figures

Fig. 1.
View of the title molecule with the atom-numbering scheme and 30% probability displacement ellipsoids. Only the major occupancy component of the disorder part is depicted.
Fig. 2.
View of the two molecules linked into a dimer by two N—H···O hydrogen bonds [Symmetry code: (a) -1/2 + x,1/2 - y, -1/2 + z].

Crystal data

C21H17FN4O2SF(000) = 1696
Mr = 408.46Dx = 1.390 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 28593 reflections
a = 21.9754 (6) Åθ = 1.7–28.0°
b = 14.7215 (5) ŵ = 0.20 mm1
c = 16.2447 (4) ÅT = 296 K
β = 132.022 (2)°Prism, colourless
V = 3904.1 (2) Å30.48 × 0.45 × 0.41 mm
Z = 8

Data collection

STOE IPDS2 diffractometer4444 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3438 reflections with I > 2σ(I)
plane graphiteRint = 0.031
Detector resolution: 6.67 pixels mm-1θmax = 27.6°, θmin = 1.9°
ω scansh = −28→28
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −19→19
Tmin = 0.910, Tmax = 0.922l = −21→21
27187 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111w = 1/[σ2(Fo2) + (0.0574P)2 + 0.7834P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4444 reflectionsΔρmax = 0.21 e Å3
302 parametersΔρmin = −0.17 e Å3
4 restraintsExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0009 (3)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.21369 (3)0.12252 (4)0.77932 (4)0.0740 (2)
F10.17462 (7)0.15524 (8)0.14694 (8)0.0831 (4)
O10.44729 (7)0.05930 (11)0.79608 (9)0.0802 (5)
O20.31157 (12)0.14689 (11)1.08254 (13)0.0975 (7)
N10.38666 (7)0.08425 (9)0.58683 (10)0.0539 (4)
N20.33122 (8)0.10877 (10)0.75039 (10)0.0607 (4)
N30.36940 (9)0.11650 (10)0.86108 (11)0.0640 (5)
N40.35123 (10)0.13330 (10)0.98479 (12)0.0683 (5)
C10.26040 (8)0.11360 (10)0.42564 (12)0.0500 (4)
C20.20191 (9)0.13246 (11)0.31160 (13)0.0572 (5)
C30.22958 (11)0.13647 (12)0.25772 (13)0.0616 (5)
C40.31034 (11)0.12236 (12)0.30720 (14)0.0650 (6)
C50.36848 (10)0.10389 (12)0.41841 (14)0.0616 (5)
C60.34253 (9)0.09967 (10)0.47696 (12)0.0516 (4)
C70.33549 (8)0.08846 (10)0.60763 (12)0.0502 (4)
C80.25619 (8)0.10495 (10)0.50956 (12)0.0482 (4)
C90.17981 (8)0.10843 (10)0.48911 (12)0.0504 (4)
C100.15738 (10)0.03640 (12)0.51928 (14)0.0632 (5)
C110.08451 (11)0.03946 (15)0.49644 (16)0.0776 (7)
C120.03309 (11)0.11353 (16)0.44348 (17)0.0802 (7)
C130.05436 (10)0.18427 (15)0.41220 (17)0.0762 (7)
C140.12698 (10)0.18184 (12)0.43468 (15)0.0627 (5)
C150.37596 (8)0.08369 (11)0.72532 (12)0.0535 (5)
C160.32070 (11)0.12386 (11)0.87750 (13)0.0594 (5)
C170.20908 (14)0.13479 (16)0.88526 (19)0.0822 (8)
C180.29483 (14)0.13926 (13)0.99488 (17)0.0741 (7)
C190.43942 (16)0.13472 (19)1.08020 (18)0.0892 (9)
C20B0.4660 (5)0.2330 (6)1.0835 (8)0.146 (3)0.513 (13)
C21B0.5130 (6)0.2848 (8)1.1365 (7)0.166 (4)0.513 (13)
C21A0.4594 (7)0.2904 (7)1.0986 (7)0.105 (3)0.487 (13)
C20A0.4920 (5)0.2117 (6)1.1294 (7)0.106 (3)0.487 (13)
H20.147000.141700.274800.059 (4)*
H10.438400.073600.635500.061 (5)*
H50.423000.094500.453600.069 (5)*
H100.19150−0.013900.554900.072 (5)*
H110.06990−0.008900.517000.098 (7)*
H12−0.015600.115400.429100.097 (7)*
H130.019700.234100.375700.103 (7)*
H140.140800.230200.413000.069 (5)*
H17A0.179700.189800.873000.112 (8)*
H17B0.180600.083500.883600.099 (7)*
H19A0.4441 (17)0.1087 (19)1.132 (2)0.113 (9)*
H19B0.4668 (18)0.086 (2)1.066 (2)0.132 (10)*
H20B0.426700.257701.013000.1750*0.513 (13)
H21C0.557600.272201.210600.1990*0.513 (13)
H21D0.508300.341501.107400.1990*0.513 (13)
H2A0.279700.119900.698700.086 (6)*
H40.324900.125400.265100.076 (6)*
H20A0.548600.204801.182500.1270*0.487 (13)
H21A0.402700.296201.045400.1260*0.487 (13)
H21B0.492300.341901.129400.1260*0.487 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0723 (3)0.0928 (4)0.0657 (3)0.0010 (2)0.0498 (2)−0.0014 (2)
F10.0882 (7)0.1037 (8)0.0487 (5)0.0056 (6)0.0422 (5)0.0057 (5)
O10.0452 (6)0.1385 (12)0.0528 (6)0.0108 (6)0.0311 (5)0.0155 (7)
O20.1405 (14)0.1047 (11)0.0858 (10)0.0000 (10)0.0916 (11)−0.0059 (8)
N10.0420 (6)0.0715 (8)0.0493 (6)0.0044 (5)0.0310 (5)0.0049 (6)
N20.0526 (7)0.0862 (9)0.0456 (6)0.0083 (6)0.0338 (6)0.0055 (6)
N30.0659 (8)0.0787 (9)0.0473 (7)0.0029 (7)0.0379 (6)0.0020 (6)
N40.0846 (10)0.0724 (9)0.0552 (8)0.0019 (7)0.0498 (8)−0.0001 (6)
C10.0472 (7)0.0554 (8)0.0474 (7)−0.0009 (6)0.0317 (6)−0.0003 (6)
C20.0520 (8)0.0645 (9)0.0481 (8)0.0010 (6)0.0306 (7)−0.0003 (6)
C30.0692 (10)0.0656 (10)0.0458 (8)−0.0002 (7)0.0368 (8)−0.0001 (7)
C40.0769 (10)0.0737 (11)0.0626 (10)−0.0028 (8)0.0542 (9)−0.0028 (8)
C50.0610 (9)0.0743 (10)0.0642 (9)0.0008 (7)0.0480 (8)0.0004 (8)
C60.0497 (7)0.0585 (8)0.0511 (7)0.0010 (6)0.0356 (6)0.0005 (6)
C70.0460 (7)0.0589 (8)0.0510 (7)0.0003 (6)0.0347 (6)0.0030 (6)
C80.0438 (6)0.0548 (8)0.0475 (7)−0.0017 (5)0.0312 (6)0.0004 (6)
C90.0421 (7)0.0614 (8)0.0469 (7)−0.0042 (6)0.0295 (6)−0.0026 (6)
C100.0545 (8)0.0744 (11)0.0623 (9)−0.0029 (7)0.0397 (8)0.0082 (8)
C110.0587 (9)0.1023 (14)0.0775 (11)−0.0106 (9)0.0479 (9)0.0122 (10)
C120.0487 (8)0.1175 (16)0.0786 (12)−0.0027 (9)0.0443 (9)0.0071 (11)
C130.0537 (9)0.0897 (13)0.0840 (13)0.0115 (8)0.0456 (9)0.0106 (10)
C140.0527 (8)0.0656 (10)0.0720 (10)0.0006 (7)0.0427 (8)0.0041 (8)
C150.0456 (7)0.0660 (9)0.0496 (8)−0.0036 (6)0.0322 (7)0.0023 (7)
C160.0733 (10)0.0588 (9)0.0541 (8)0.0036 (7)0.0459 (8)0.0019 (7)
C170.0978 (14)0.0875 (14)0.0915 (14)0.0088 (11)0.0758 (13)0.0004 (11)
C180.1055 (14)0.0660 (11)0.0765 (12)0.0041 (9)0.0715 (12)0.0002 (8)
C190.0908 (15)0.1127 (19)0.0540 (11)−0.0049 (13)0.0443 (11)−0.0017 (11)
C20B0.095 (5)0.109 (6)0.070 (5)−0.011 (4)−0.012 (4)0.013 (4)
C21B0.093 (6)0.140 (7)0.150 (7)−0.032 (5)0.034 (5)0.020 (5)
C21A0.106 (6)0.115 (6)0.075 (4)0.005 (4)0.053 (4)0.009 (4)
C20A0.074 (4)0.138 (6)0.054 (4)0.004 (4)0.021 (3)0.003 (4)

Geometric parameters (Å, °)

S1—C161.747 (2)C10—C111.382 (4)
S1—C171.800 (3)C11—C121.380 (3)
F1—C31.3652 (19)C12—C131.371 (4)
O1—C151.223 (2)C13—C141.379 (4)
O2—C181.214 (3)C17—C181.495 (4)
N1—C61.3639 (19)C19—C20B1.548 (10)
N1—C71.375 (3)C19—C20A1.422 (10)
N2—N31.3894 (19)C20A—C21A1.275 (14)
N2—C151.344 (3)C20B—C21B1.095 (15)
N3—C161.269 (4)C2—H20.9300
N4—C161.393 (2)C4—H40.9300
N4—C181.358 (4)C5—H50.9300
N4—C191.462 (4)C10—H100.9300
N1—H10.8600C11—H110.9300
N2—H2A0.8600C12—H120.9300
C1—C61.407 (3)C13—H130.9300
C1—C81.433 (3)C14—H140.9300
C1—C21.405 (2)C17—H17A0.9700
C2—C31.361 (3)C17—H17B0.9700
C3—C41.389 (4)C19—H19A0.87 (3)
C4—C51.371 (2)C19—H19B1.06 (4)
C5—C61.400 (3)C20A—H20A0.9300
C7—C81.385 (2)C20B—H20B0.9300
C7—C151.475 (2)C21A—H21A0.9300
C8—C91.478 (3)C21A—H21B0.9300
C9—C101.390 (3)C21B—H21C0.9300
C9—C141.387 (3)C21B—H21D0.9300
S1···N22.925 (2)C21B···S1ix3.605 (13)
S1···C113.634 (2)C1···H143.0300
S1···C21Bi3.605 (13)C1···H14iii3.0400
S1···H2A2.5200C2···H143.0900
F1···C10ii3.369 (2)C6···H14iii2.9500
F1···C20Biii3.284 (10)C7···H14iii2.7800
F1···C16iii3.286 (2)C7···H103.0600
F1···C21Aiii3.082 (9)C8···H2A2.7600
F1···H11ii2.8100C8···H14iii2.9600
F1···H10ii2.7300C9···H23.0900
F1···H20Biii2.3700C9···H2A2.5400
F1···H21Aiii2.4600C10···H2A2.6000
O1···N12.7205 (18)C14···H22.9700
O1···N32.678 (3)C15···H1iv3.0700
O1···N1iv2.789 (2)C16···H20B2.7000
O2···C17v3.336 (3)C17···H21Ci2.8900
O1···H1iv1.9600C18···H21A3.0000
O1···H12.4900C21B···H17Aix3.0800
O1···H19Bvi2.74 (3)H1···O1iv1.9600
O2···H4vii2.8000H1···O12.4900
O2···H19A2.51 (4)H1···C15iv3.0700
O2···H17Av2.4800H2···C142.9700
N1···O12.7205 (18)H2···C93.0900
N1···O1iv2.789 (2)H2···H12x2.5800
N2···C103.259 (2)H2A···C92.5400
N2···S12.925 (2)H2A···C102.6000
N2···C93.1904 (19)H2A···C82.7600
N3···O12.678 (3)H2A···S12.5200
N3···C20B3.199 (10)H4···O2xi2.8000
N3···C5viii3.379 (2)H4···H20Aiv2.5800
N4···C6viii3.433 (2)H10···F1viii2.7300
N1···H14iii2.8000H10···C73.0600
N3···H19B2.52 (2)H11···F1viii2.8100
N3···H20B2.8000H11···H12xii2.4600
N4···H21A2.5500H12···H11xii2.4600
C1···C14iii3.581 (2)H12···H2x2.5800
C2···C143.413 (3)H14···N1iii2.8000
C5···N3ii3.379 (2)H14···C13.0300
C5···C16ii3.443 (2)H14···C23.0900
C6···C14iii3.401 (2)H14···C7iii2.7800
C6···N4ii3.433 (2)H14···C8iii2.9600
C6···C16ii3.554 (2)H14···C1iii3.0400
C9···N23.1904 (19)H14···C6iii2.9500
C10···N23.259 (2)H17A···O2v2.4800
C10···F1viii3.369 (2)H17A···C21Bi3.0800
C11···S13.634 (2)H17A···H21Ci2.2300
C14···C23.413 (3)H19A···O22.51 (4)
C14···C6iii3.401 (2)H19B···O1vi2.74 (3)
C14···C1iii3.581 (2)H19B···N32.52 (2)
C16···C6viii3.554 (2)H20A···H4iv2.5800
C16···F1iii3.286 (2)H20B···C162.7000
C16···C5viii3.443 (2)H20B···N32.8000
C17···O2v3.336 (3)H20B···F1iii2.3700
C18···C21A3.565 (14)H21A···F1iii2.4600
C20B···N33.199 (10)H21A···N42.5500
C20B···F1iii3.284 (10)H21A···C183.0000
C21A···C183.565 (14)H21C···H17Aix2.2300
C21A···F1iii3.082 (9)H21C···C17ix2.8900
C16—S1—C1791.66 (12)O2—C18—C17123.5 (3)
C6—N1—C7109.39 (16)N4—C18—C17112.2 (2)
N3—N2—C15118.97 (16)N4—C19—C20A127.5 (4)
N2—N3—C16114.55 (17)N4—C19—C20B104.6 (4)
C16—N4—C18116.3 (2)C19—C20A—C21A118.2 (10)
C16—N4—C19120.9 (2)C19—C20B—C21B144.5 (10)
C18—N4—C19122.7 (2)C1—C2—H2122.00
C7—N1—H1125.00C3—C2—H2122.00
C6—N1—H1125.00C3—C4—H4120.00
N3—N2—H2A120.00C5—C4—H4120.00
C15—N2—H2A121.00C4—C5—H5121.00
C2—C1—C6119.25 (19)C6—C5—H5121.00
C2—C1—C8133.4 (2)C9—C10—H10120.00
C6—C1—C8107.31 (14)C11—C10—H10120.00
C1—C2—C3116.7 (2)C10—C11—H11120.00
F1—C3—C2118.3 (2)C12—C11—H11120.00
C2—C3—C4124.70 (16)C11—C12—H12120.00
F1—C3—C4117.0 (2)C13—C12—H12120.00
C3—C4—C5119.7 (2)C12—C13—H13120.00
C4—C5—C6117.4 (2)C14—C13—H13120.00
C1—C6—C5122.36 (15)C9—C14—H14119.00
N1—C6—C1107.82 (18)C13—C14—H14120.00
N1—C6—C5129.8 (2)S1—C17—H17A110.00
C8—C7—C15134.6 (2)S1—C17—H17B110.00
N1—C7—C15115.70 (16)C18—C17—H17A110.00
N1—C7—C8109.36 (15)C18—C17—H17B110.00
C1—C8—C9124.76 (14)H17A—C17—H17B108.00
C7—C8—C9129.06 (16)N4—C19—H19A104 (2)
C1—C8—C7106.10 (18)N4—C19—H19B107.7 (16)
C8—C9—C10120.79 (16)C20B—C19—H19A125.7 (19)
C8—C9—C14120.69 (17)C20B—C19—H19B113 (2)
C10—C9—C14118.5 (2)H19A—C19—H19B101 (3)
C9—C10—C11120.10 (18)C20A—C19—H19A106.5 (19)
C10—C11—C12120.8 (2)C20A—C19—H19B107 (2)
C11—C12—C13119.4 (3)C21A—C20A—H20A121.00
C12—C13—C14120.2 (2)C19—C20A—H20A121.00
C9—C14—C13121.0 (2)C21B—C20B—H20B108.00
N2—C15—C7116.83 (16)C19—C20B—H20B108.00
O1—C15—N2122.24 (15)C20A—C21A—H21A120.00
O1—C15—C7120.92 (19)H21A—C21A—H21B120.00
S1—C16—N4111.7 (2)C20A—C21A—H21B120.00
N3—C16—N4120.3 (2)C20B—C21B—H21D120.00
S1—C16—N3128.04 (13)H21C—C21B—H21D120.00
S1—C17—C18108.1 (2)C20B—C21B—H21C120.00
O2—C18—N4124.3 (3)
C17—S1—C16—N4−0.12 (14)C2—C1—C6—C50.0 (2)
C17—S1—C16—N3179.05 (17)C1—C2—C3—F1−179.58 (14)
C16—S1—C17—C18−0.04 (16)C1—C2—C3—C40.7 (3)
C6—N1—C7—C81.30 (17)C2—C3—C4—C5−0.8 (3)
C7—N1—C6—C5178.52 (16)F1—C3—C4—C5179.53 (16)
C7—N1—C6—C1−0.40 (17)C3—C4—C5—C60.4 (3)
C6—N1—C7—C15−173.18 (13)C4—C5—C6—N1−178.79 (16)
N3—N2—C15—O16.9 (3)C4—C5—C6—C10.0 (2)
C15—N2—N3—C16−167.60 (16)C8—C7—C15—N2−7.9 (3)
N3—N2—C15—C7−171.95 (14)N1—C7—C8—C9175.12 (14)
N2—N3—C16—N4−179.16 (14)C15—C7—C8—C9−11.9 (3)
N2—N3—C16—S11.7 (2)C8—C7—C15—O1173.20 (18)
C16—N4—C18—O2179.34 (18)C15—C7—C8—C1171.37 (17)
C19—N4—C18—O20.5 (3)N1—C7—C8—C1−1.63 (17)
C18—N4—C16—S10.27 (19)N1—C7—C15—N2164.77 (15)
C18—N4—C19—C20B−100.8 (5)N1—C7—C15—O1−14.1 (2)
C19—N4—C16—S1179.10 (16)C1—C8—C9—C10122.17 (17)
C18—N4—C16—N3−178.97 (16)C1—C8—C9—C14−54.8 (2)
C19—N4—C16—N3−0.1 (3)C7—C8—C9—C10−54.0 (2)
C16—N4—C19—C20B80.4 (5)C7—C8—C9—C14129.01 (18)
C16—N4—C18—C17−0.3 (2)C8—C9—C10—C11−177.95 (16)
C19—N4—C18—C17−179.11 (19)C10—C9—C14—C130.9 (3)
C6—C1—C2—C3−0.3 (2)C14—C9—C10—C11−0.9 (3)
C8—C1—C2—C3179.17 (17)C8—C9—C14—C13177.94 (16)
C2—C1—C6—N1179.01 (14)C9—C10—C11—C120.1 (3)
C2—C1—C8—C94.9 (3)C10—C11—C12—C130.8 (3)
C2—C1—C8—C7−178.18 (17)C11—C12—C13—C14−0.8 (3)
C6—C1—C8—C71.37 (17)C12—C13—C14—C9−0.1 (3)
C6—C1—C8—C9−175.56 (14)S1—C17—C18—N40.2 (2)
C8—C1—C6—N1−0.62 (17)S1—C17—C18—O2−179.46 (17)
C8—C1—C6—C5−179.63 (15)N4—C19—C20B—C21B158 (2)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x, −y, z−1/2; (iii) −x+1/2, −y+1/2, −z+1; (iv) −x+1, y, −z+3/2; (v) −x+1/2, −y+1/2, −z+2; (vi) −x+1, −y, −z+2; (vii) x, y, z+1; (viii) x, −y, z+1/2; (ix) x+1/2, −y+1/2, z+1/2; (x) −x, y, −z+1/2; (xi) x, y, z−1; (xii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1iv0.861.962.789 (2)161
N2—H2A···S10.862.522.925 (2)110
C17—H17A···O2v0.972.483.336 (3)147
C19—H19A···O20.87 (3)2.51 (4)2.841 (5)103 (3)
C20B—H20B···F1iii0.932.373.284 (10)168
C14—H14···Cg2iii0.932.663.371 (2)134

Symmetry codes: (iv) −x+1, y, −z+3/2; (v) −x+1/2, −y+1/2, −z+2; (iii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2568).

References

  • Bonde, C. G. & Gaikwad, N. J. (2004). Bioorg. Med. Chem.12, 2151–2161. [PubMed]
  • Çapan, G., Ulusoy, N., Ergenç, N. & Kiraz, M. (1999). Monatsh. Chem.130, 1399–1407.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Güzel, Ö., Terzioğlu, N., Çapan, G. & Salman, A. (2006). Arkivoc, 12, 98–110.
  • Kline, T., Felise, H. B., Barry, K. C., Jackson, S. R., Nguyen, H. V. & Miller, S. I. (2008). J. Med. Chem.51, 7065–7074. [PMC free article] [PubMed]
  • Küçükgüzel, S. G., Oruc, E. E., Rollas, S., Sahin, F. & Özbek, A. (2002). Eur. J. Med. Chem.37, 197–206. [PubMed]
  • Ottanà, R., Maccari, R., Barreca, M. L., Bruno, G., Rotondo, A., Rossi, A., Chiricosta, G., Di Paola, R., Sautebin, L., Cuzzocrea, S. & Vigorita, M. G. (2005). Bioorg. Med. Chem.13, 4243–4252. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Ulusoy, N. (2002). Arzneim. Forsch. Drug Res.52, 565–571. [PubMed]
  • Zhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. & Yan, B. (2008). J. Med. Chem.51, 1242–1251. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography