PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o994.
Published online 2009 April 8. doi:  10.1107/S1600536809012380
PMCID: PMC2977686

3′-Benz­yloxy-3-hydr­oxy-3,3′-bi-1H-indole-2,2′(3H,3′H)-dione monohydrate

Abstract

In the title compound, C23H18N2O4·H2O, the two oxindole rings subtend a dihedral angle of 54.29 (5)°. The crystal structure is stabilized by intermolecular N—H(...)O, O—H(...)O and C—H(...)π inter­actions.

Related literature

For the biological activity and pharmaceutical applications of indole derivatives, see: Harris & Uhle (1960 [triangle]); Ho et al. (1986 [triangle]); Rajeswaran et al. (1999 [triangle]); Stevenson et al. (2000 [triangle]). For description of hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o994-scheme1.jpg

Experimental

Crystal data

  • C23H18N2O4·H2O
  • M r = 404.41
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o994-efi1.jpg
  • a = 9.8243 (3) Å
  • b = 9.9304 (6) Å
  • c = 11.4460 (5) Å
  • α = 107.517 (2)°
  • β = 114.227 (3)°
  • γ = 93.918 (2)°
  • V = 947.17 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.28 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.972, T max = 0.980
  • 16894 measured reflections
  • 3335 independent reflections
  • 3045 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.084
  • S = 1.05
  • 3335 reflections
  • 292 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012380/bt2889sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012380/bt2889Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Against this background and to ascertain the molecular conformation, the structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The oxindole rings enclose a dihedral angle of 54.29 (5)°. In the benzene ring of the indole ring system, the endocyclic angels at C3 and C14 are contracted to 117.24 (25)° and 116.90 (14)°, while those at C2 and C13 are expanded to 122.20 (14)° and 122.69 (13)°, respectively. This would appear to be a real effect caused by the fusion of the pyrrole with benzene ring resulting in an angular distortion. The sum of the bond angles around the hetero nitrogen atom in the oxindole ring systems are equal to N1 [359.76 (11)°] and N12 [359.93 (10)°], is in accordance with the sp2 hybridization.

The packing of the molecules in the crystal structure is stabilized through N-H···O, O-H···O and C-H···π interactions. Atom N12 (x, y, z) donates a proton to O1 (-x+1, -y+1, -z+1) and forms a dimer with graph-set motif of R22(14) (Bernstein et al., 1995). The intermolecular N1-H1···O5 and O5-H5B···O3 hydrogen bonds form a one dimensional chain running along a-axis. The indole ring interacts with the other indole moiety through a weak intra C-H···π interaction involving atom C17, the separation between H17 and the centroid of the C2/C3/C4/C5/C6/C7 (Cg3) ring being 3.15Å.

Experimental

To a refluxing solution of isatin (1 equivalent), Rh2(OAC)4 (0.01 equivalent) in dichloromethane, benzyl alcohol (1.2 equivalent) was added. After five minutes, 3-diazo-1,3-dihydro-indol-2-one in dichloromethane was added dropwise through a syringe pump. The reaction mixture was allowed to stir at 60°C for half-an-hour. The solid formed in the reaction was filtered and washed with methanol to obtain the pure product. The compound was recrystallized in ethanol.

Refinement

H atoms bonded to nitrogen and oxygen H atoms were freely refined. H atoms bonded to carbon were positioned geometrically (C—H=0.93–0.97 Å) and allowed to ride on their parent atoms with 1.2Ueq(C).

Figures

Fig. 1.
Perspective view of the molecule with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as small circles of arbitrary radii.
Fig. 2.
The crystal packing of the molecules viewed down c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C23H18N2O4·H2OZ = 2
Mr = 404.41F(000) = 424
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8243 (3) ÅCell parameters from 4635 reflections
b = 9.9304 (6) Åθ = 2.1–25.0°
c = 11.4460 (5) ŵ = 0.10 mm1
α = 107.517 (2)°T = 293 K
β = 114.227 (3)°Block, colourless
γ = 93.918 (2)°0.28 × 0.25 × 0.20 mm
V = 947.17 (8) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer3335 independent reflections
Radiation source: fine-focus sealed tube3045 reflections with I > 2σ(I)
graphiteRint = 0.021
ω and [var phi] scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −11→11
Tmin = 0.972, Tmax = 0.980k = −11→11
16894 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084w = 1/[σ2(Fo2) + (0.038P)2 + 0.3004P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
3335 reflectionsΔρmax = 0.23 e Å3
292 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.33868 (11)0.37105 (9)0.58225 (10)0.0399 (2)
O20.38716 (10)0.07924 (10)0.53420 (9)0.0335 (2)
H20.381 (2)−0.018 (2)0.504 (2)0.070 (6)*
O30.61939 (10)0.21310 (10)0.48237 (10)0.0374 (2)
O40.33920 (10)0.00510 (8)0.25071 (9)0.0302 (2)
O50.09912 (16)−0.40448 (16)−0.55511 (16)0.0632 (3)
H5B0.183 (4)−0.346 (3)−0.552 (3)0.129 (10)*
H5A0.064 (4)−0.482 (4)−0.622 (3)0.135 (12)*
N10.09503 (13)0.23295 (12)0.47470 (12)0.0349 (3)
H10.0522 (19)0.2945 (18)0.5098 (17)0.048 (4)*
C20.02036 (14)0.08934 (14)0.38791 (13)0.0320 (3)
C3−0.12940 (15)0.02332 (17)0.34058 (15)0.0435 (3)
H3−0.19610.07350.36470.052*
C4−0.17671 (17)−0.12064 (19)0.25573 (16)0.0520 (4)
H4−0.2777−0.16810.22110.062*
C5−0.07767 (19)−0.19539 (17)0.22128 (17)0.0521 (4)
H5−0.1129−0.29210.16320.062*
C60.07409 (17)−0.12838 (15)0.27202 (14)0.0407 (3)
H60.1416−0.17940.25020.049*
C70.12222 (14)0.01554 (13)0.35540 (12)0.0288 (3)
C80.27766 (13)0.11694 (12)0.43061 (12)0.0262 (3)
C90.24378 (14)0.25831 (13)0.50590 (12)0.0286 (3)
C100.33824 (13)0.14368 (12)0.33172 (12)0.0255 (3)
C110.50226 (13)0.24303 (12)0.41187 (12)0.0273 (3)
N120.49318 (12)0.36457 (11)0.38326 (11)0.0305 (2)
H120.5721 (18)0.4358 (17)0.4159 (16)0.042 (4)*
C130.34446 (14)0.36220 (13)0.29098 (12)0.0289 (3)
C140.29438 (16)0.46934 (14)0.24218 (14)0.0382 (3)
H140.36020.55700.27010.046*
C150.14143 (18)0.44063 (16)0.14958 (15)0.0448 (4)
H150.10360.51080.11470.054*
C160.04399 (16)0.31071 (17)0.10790 (15)0.0443 (4)
H16−0.05800.29400.04470.053*
C170.09647 (15)0.20413 (15)0.15937 (13)0.0359 (3)
H170.03070.11640.13140.043*
C180.24816 (14)0.23153 (13)0.25278 (12)0.0277 (3)
C190.40617 (18)0.00789 (15)0.16166 (15)0.0418 (3)
H19A0.51600.04410.21510.050*
H19B0.36490.07190.11310.050*
C200.37193 (14)−0.14144 (13)0.06125 (13)0.0315 (3)
C210.39451 (15)−0.25784 (15)0.10387 (14)0.0370 (3)
H210.4291−0.24400.19630.044*
C220.36598 (19)−0.39435 (16)0.00986 (17)0.0492 (4)
H220.3802−0.47250.03900.059*
C230.3165 (2)−0.41584 (17)−0.12678 (18)0.0573 (4)
H230.2985−0.5080−0.18970.069*
C240.2940 (2)−0.30139 (19)−0.16987 (16)0.0566 (4)
H240.2607−0.3157−0.26230.068*
C250.32036 (17)−0.16459 (17)−0.07653 (15)0.0440 (3)
H250.3033−0.0874−0.10670.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0466 (6)0.0270 (5)0.0427 (5)0.0014 (4)0.0243 (5)0.0037 (4)
O20.0331 (5)0.0333 (5)0.0335 (5)0.0095 (4)0.0121 (4)0.0154 (4)
O30.0245 (5)0.0340 (5)0.0483 (6)0.0061 (4)0.0110 (4)0.0158 (4)
O40.0346 (5)0.0230 (4)0.0360 (5)0.0038 (3)0.0224 (4)0.0061 (4)
O50.0581 (8)0.0594 (8)0.0800 (9)0.0163 (6)0.0439 (7)0.0168 (7)
N10.0346 (6)0.0360 (6)0.0414 (6)0.0138 (5)0.0235 (5)0.0135 (5)
C20.0298 (6)0.0400 (7)0.0316 (6)0.0074 (5)0.0149 (5)0.0187 (6)
C30.0279 (7)0.0621 (9)0.0482 (8)0.0095 (6)0.0179 (6)0.0292 (7)
C40.0302 (7)0.0672 (11)0.0510 (9)−0.0090 (7)0.0111 (7)0.0258 (8)
C50.0502 (9)0.0427 (8)0.0482 (9)−0.0148 (7)0.0180 (7)0.0082 (7)
C60.0428 (8)0.0333 (7)0.0433 (8)−0.0011 (6)0.0219 (7)0.0089 (6)
C70.0282 (6)0.0306 (6)0.0293 (6)0.0026 (5)0.0139 (5)0.0125 (5)
C80.0256 (6)0.0250 (6)0.0283 (6)0.0057 (5)0.0123 (5)0.0096 (5)
C90.0332 (7)0.0277 (6)0.0296 (6)0.0076 (5)0.0174 (5)0.0117 (5)
C100.0247 (6)0.0217 (6)0.0288 (6)0.0041 (4)0.0132 (5)0.0064 (5)
C110.0257 (6)0.0253 (6)0.0304 (6)0.0055 (5)0.0145 (5)0.0070 (5)
N120.0265 (5)0.0251 (5)0.0359 (6)0.0003 (4)0.0123 (5)0.0096 (4)
C130.0311 (6)0.0290 (6)0.0279 (6)0.0066 (5)0.0152 (5)0.0095 (5)
C140.0458 (8)0.0319 (7)0.0389 (7)0.0085 (6)0.0185 (6)0.0164 (6)
C150.0505 (9)0.0480 (8)0.0432 (8)0.0204 (7)0.0189 (7)0.0272 (7)
C160.0328 (7)0.0612 (9)0.0389 (8)0.0134 (7)0.0110 (6)0.0247 (7)
C170.0290 (7)0.0431 (7)0.0334 (7)0.0037 (6)0.0119 (5)0.0151 (6)
C180.0289 (6)0.0293 (6)0.0269 (6)0.0061 (5)0.0152 (5)0.0092 (5)
C190.0520 (8)0.0333 (7)0.0501 (8)0.0037 (6)0.0375 (7)0.0089 (6)
C200.0287 (6)0.0326 (7)0.0353 (7)0.0053 (5)0.0194 (5)0.0084 (5)
C210.0376 (7)0.0400 (7)0.0350 (7)0.0105 (6)0.0179 (6)0.0129 (6)
C220.0611 (10)0.0361 (8)0.0614 (10)0.0175 (7)0.0380 (8)0.0161 (7)
C230.0735 (11)0.0402 (8)0.0540 (10)0.0033 (8)0.0412 (9)−0.0039 (7)
C240.0673 (11)0.0638 (11)0.0328 (8)0.0027 (8)0.0273 (8)0.0056 (7)
C250.0499 (9)0.0494 (8)0.0409 (8)0.0117 (7)0.0253 (7)0.0201 (7)

Geometric parameters (Å, °)

O1—C91.2191 (15)N12—C131.4016 (16)
O2—C81.4066 (14)N12—H120.877 (16)
O2—H20.91 (2)C13—C141.3747 (18)
O3—C111.2218 (15)C13—C181.3861 (17)
O4—C101.4123 (14)C14—C151.384 (2)
O4—C191.4273 (15)C14—H140.9300
O5—H5B0.96 (3)C15—C161.376 (2)
O5—H5A0.83 (3)C15—H150.9300
N1—C91.3392 (17)C16—C171.391 (2)
N1—C21.4017 (17)C16—H160.9300
N1—H10.860 (18)C17—C181.3783 (18)
C2—C31.3742 (19)C17—H170.9300
C2—C71.3851 (18)C19—C201.4906 (18)
C3—C41.381 (2)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C4—C51.375 (2)C20—C251.3808 (19)
C4—H40.9300C20—C211.3816 (19)
C5—C61.387 (2)C21—C221.377 (2)
C5—H50.9300C21—H210.9300
C6—C71.3759 (18)C22—C231.374 (2)
C6—H60.9300C22—H220.9300
C7—C81.5086 (16)C23—C241.366 (3)
C8—C91.5477 (16)C23—H230.9300
C8—C101.5551 (16)C24—C251.380 (2)
C10—C181.5114 (17)C24—H240.9300
C10—C111.5608 (16)C25—H250.9300
C11—N121.3418 (16)
C8—O2—H2110.3 (12)C13—N12—H12123.8 (10)
C10—O4—C19113.84 (9)C14—C13—C18122.68 (12)
H5B—O5—H5A112 (3)C14—C13—N12127.59 (12)
C9—N1—C2111.86 (11)C18—C13—N12109.73 (11)
C9—N1—H1124.2 (11)C13—C14—C15116.90 (13)
C2—N1—H1123.7 (11)C13—C14—H14121.5
C3—C2—C7122.20 (13)C15—C14—H14121.5
C3—C2—N1127.96 (13)C16—C15—C14121.59 (13)
C7—C2—N1109.82 (11)C16—C15—H15119.2
C2—C3—C4117.24 (14)C14—C15—H15119.2
C2—C3—H3121.4C15—C16—C17120.67 (13)
C4—C3—H3121.4C15—C16—H16119.7
C5—C4—C3121.41 (13)C17—C16—H16119.7
C5—C4—H4119.3C18—C17—C16118.49 (12)
C3—C4—H4119.3C18—C17—H17120.8
C4—C5—C6120.82 (14)C16—C17—H17120.8
C4—C5—H5119.6C17—C18—C13119.65 (12)
C6—C5—H5119.6C17—C18—C10131.70 (11)
C7—C6—C5118.33 (14)C13—C18—C10108.63 (10)
C7—C6—H6120.8O4—C19—C20109.22 (10)
C5—C6—H6120.8O4—C19—H19A109.8
C6—C7—C2119.98 (12)C20—C19—H19A109.8
C6—C7—C8131.53 (12)O4—C19—H19B109.8
C2—C7—C8108.41 (10)C20—C19—H19B109.8
O2—C8—C7114.09 (10)H19A—C19—H19B108.3
O2—C8—C9105.88 (9)C25—C20—C21118.92 (12)
C7—C8—C9101.76 (9)C25—C20—C19119.93 (13)
O2—C8—C10111.95 (9)C21—C20—C19121.13 (12)
C7—C8—C10112.73 (9)C22—C21—C20120.20 (13)
C9—C8—C10109.61 (9)C22—C21—H21119.9
O1—C9—N1126.95 (12)C20—C21—H21119.9
O1—C9—C8124.94 (11)C23—C22—C21120.39 (15)
N1—C9—C8108.10 (10)C23—C22—H22119.8
O4—C10—C18115.50 (9)C21—C22—H22119.8
O4—C10—C8105.35 (9)C24—C23—C22119.82 (14)
C18—C10—C8112.18 (9)C24—C23—H23120.1
O4—C10—C11110.65 (9)C22—C23—H23120.1
C18—C10—C11101.56 (9)C23—C24—C25120.11 (14)
C8—C10—C11111.77 (9)C23—C24—H24119.9
O3—C11—N12125.87 (11)C25—C24—H24119.9
O3—C11—C10126.42 (11)C24—C25—C20120.55 (14)
N12—C11—C10107.61 (10)C24—C25—H25119.7
C11—N12—C13112.33 (10)C20—C25—H25119.7
C11—N12—H12123.8 (10)
C9—N1—C2—C3176.59 (13)O4—C10—C11—O3−50.44 (16)
C9—N1—C2—C7−2.02 (15)C18—C10—C11—O3−173.59 (12)
C7—C2—C3—C4−1.4 (2)C8—C10—C11—O366.64 (15)
N1—C2—C3—C4−179.82 (13)O4—C10—C11—N12126.13 (10)
C2—C3—C4—C50.7 (2)C18—C10—C11—N122.99 (12)
C3—C4—C5—C60.6 (2)C8—C10—C11—N12−116.79 (11)
C4—C5—C6—C7−1.3 (2)O3—C11—N12—C13175.33 (12)
C5—C6—C7—C20.7 (2)C10—C11—N12—C13−1.27 (13)
C5—C6—C7—C8177.20 (13)C11—N12—C13—C14178.62 (12)
C3—C2—C7—C60.65 (19)C11—N12—C13—C18−1.22 (14)
N1—C2—C7—C6179.35 (11)C18—C13—C14—C15−1.10 (19)
C3—C2—C7—C8−176.58 (11)N12—C13—C14—C15179.07 (12)
N1—C2—C7—C82.12 (14)C13—C14—C15—C16−0.2 (2)
C6—C7—C8—O2−64.69 (17)C14—C15—C16—C170.8 (2)
C2—C7—C8—O2112.10 (11)C15—C16—C17—C18−0.1 (2)
C6—C7—C8—C9−178.23 (13)C16—C17—C18—C13−1.14 (19)
C2—C7—C8—C9−1.44 (12)C16—C17—C18—C10176.85 (12)
C6—C7—C8—C1064.46 (17)C14—C13—C18—C171.79 (19)
C2—C7—C8—C10−118.75 (11)N12—C13—C18—C17−178.35 (11)
C2—N1—C9—O1−177.54 (12)C14—C13—C18—C10−176.62 (11)
C2—N1—C9—C81.01 (14)N12—C13—C18—C103.23 (13)
O2—C8—C9—O159.33 (15)O4—C10—C18—C1758.38 (17)
C7—C8—C9—O1178.85 (11)C8—C10—C18—C17−62.37 (16)
C10—C8—C9—O1−61.60 (15)C11—C10—C18—C17178.15 (13)
O2—C8—C9—N1−119.26 (10)O4—C10—C18—C13−123.47 (11)
C7—C8—C9—N10.27 (12)C8—C10—C18—C13115.79 (11)
C10—C8—C9—N1119.82 (11)C11—C10—C18—C13−3.70 (12)
C19—O4—C10—C1861.51 (14)C10—O4—C19—C20−168.10 (10)
C19—O4—C10—C8−174.11 (10)O4—C19—C20—C25133.58 (13)
C19—O4—C10—C11−53.14 (13)O4—C19—C20—C21−48.07 (17)
O2—C8—C10—O473.14 (11)C25—C20—C21—C220.1 (2)
C7—C8—C10—O4−57.10 (12)C19—C20—C21—C22−178.29 (13)
C9—C8—C10—O4−169.68 (9)C20—C21—C22—C230.7 (2)
O2—C8—C10—C18−160.41 (9)C21—C22—C23—C24−0.7 (3)
C7—C8—C10—C1869.34 (12)C22—C23—C24—C25−0.1 (3)
C9—C8—C10—C18−43.23 (13)C23—C24—C25—C201.0 (3)
O2—C8—C10—C11−47.09 (13)C21—C20—C25—C24−0.9 (2)
C7—C8—C10—C11−177.34 (9)C19—C20—C25—C24177.44 (14)
C9—C8—C10—C1170.09 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.860 (18)2.045 (18)2.8858 (17)165.6 (15)
O2—H2···O3ii0.91 (2)1.99 (2)2.8463 (13)155.9 (18)
O2—H2···O2ii0.91 (2)2.57 (2)3.0274 (18)111.9 (14)
O5—H5B···O3iii0.96 (3)1.97 (3)2.8969 (17)161 (3)
N12—H12···O1iv0.877 (16)2.044 (16)2.8329 (14)149.2 (14)
C17—H17···Cg30.933.153.8226 (17)131
C16—H16···Cg5v0.932.753.5140 (19)140

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z+1; (v) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2889).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther.128, 353-363.
  • Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem.29, 118-121.
  • Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem.64, 1369-1371.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett.10, 2697-2704. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography