PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o980.
Published online 2009 April 8. doi:  10.1107/S1600536809012355
PMCID: PMC2977676

4-Guanidinobenzene­sulfonic acid

Abstract

In the zwitterionic title compound (systematic name: 4-{[amino(inimio)methyl]amino}benzenesulfonate), C7H9N3O3S, the dihedral angle between the plane of the guanidine grouping and the benzene ring system is 44.87 (7)°. The crystal packing is stabilized by inter­molecular N—H(...)O hydrogen bonds involving all the potential donors.

Related literature

For the synthesis, see: Hofbens & Rath (1981 [triangle]). For the effect of guanidine salts on protein structure and their inhibitory effect on various physiological activities, see: Miyake et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o980-scheme1.jpg

Experimental

Crystal data

  • C7H9N3O3S
  • M r = 215.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o980-efi1.jpg
  • a = 7.9967 (9) Å
  • b = 11.9200 (13) Å
  • c = 19.721 (2) Å
  • V = 1879.8 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 296 K
  • 0.35 × 0.3 × 0.2 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.902, T max = 0.944
  • 10292 measured reflections
  • 2156 independent reflections
  • 1544 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.110
  • S = 1.02
  • 2156 reflections
  • 163 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012355/bq2128sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012355/bq2128Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Science Foundation of Jiangsu Education Bureau (05KJD 150039), the Professor Foundation of Huaiyin Teachers Collage (05 HSJS018) and the Science Foundation of Jangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (JSKC 06028) for financial support.

supplementary crystallographic information

Comment

Guanidine is known to interact strongly with various substances of biological origin in their molecules forming ionic pairs through ionic bonds and hydrogen bonding. Research on guanidine salts in the field of biochemistry have dealt mainly with their effect on protein structure and inhibitory effect on various physiological activities (Miyake et al., 2008). The full molecule of the title compound, (I), (Fig. 1), is a big hyperconjugation system because the bond lengths of N1—C7 (1.329 (3)Å), C7—N2 (1.313 (3)Å) and C7—N3 (1.327 (3)Å) are averaged, and the bond lengths of S1—O1 (1.4546 (15)Å), S1—O2 (1.4619 (15)Å) and S1—O3 (1.4457 (15)Å) are also averaged. Meanwhile, the bond lengths of C3—N1 (1.327 (3)Å) and C6—S1 (1.770 (2)Å) become shorter than standard values (C—N = 1.47–1.50Å and C—S = 1.82Å). In addition, in (I) C2-C3-N1-C7 form a torsion angle of 42.3 (3)° and C1-C6-S1-O1 form a torsion angle of -69.91 (18)°. The dihedral angle between the plane of the guanidine group and the benzene ring system is 44.87 (7)°, while the dihedral angle between the benzene ring and the adjacent S1O1O2 group is 84.76 (7)°. The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds involving all the potential donors.

Experimental

The title compound was synthesized by 4-aminobenzenesulfonic acid (3.5 g, 0.02 mol), 50% amino nitrile (3.5 g, 0.04 mol) and 37% hydrochloric acid (3.4 ml) in the ethanol boil point temperature for 24 h with stirring (Hofbens & Rath, 1981). The reaction mixture was reduced pressure distillation to obtain the rough solid, then dissolved in water. The solid residue was filtered and the filtrate was kept at room temperature. Colorless crystals of the title compound were obtained after a few days. The crystal used for data collection was obtained by slow evaporation from a saturated water solution at room temperature.

Refinement

All of the H atoms were located in a difference synthesis and refined isotropically [aromatic C—H = 0.90 (2)–0.97 (2)Å and N—H = 0.80 (3)–0.91 (3) Å].

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Crystal data

C7H9N3O3SDx = 1.521 Mg m3
Mr = 215.24Melting point > 300 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2125 reflections
a = 7.9967 (9) Åθ = 3.2–25.9°
b = 11.9200 (13) ŵ = 0.33 mm1
c = 19.721 (2) ÅT = 296 K
V = 1879.8 (4) Å3Block, colourless
Z = 80.35 × 0.3 × 0.2 mm
F(000) = 896

Data collection

Bruker SMART APEXII CCD diffractometer2156 independent reflections
Radiation source: fine-focus sealed tube1544 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −10→10
Tmin = 0.902, Tmax = 0.944k = −15→13
10292 measured reflectionsl = −24→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.054P)2 + 0.6089P] where P = (Fo2 + 2Fc2)/3
2156 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0397 (3)0.48689 (18)0.26624 (10)0.0329 (5)
C20.0470 (3)0.53779 (18)0.32882 (11)0.0338 (5)
C30.1174 (2)0.64333 (17)0.33506 (10)0.0316 (5)
C40.1778 (3)0.69826 (18)0.27833 (11)0.0356 (5)
C50.1684 (3)0.64822 (17)0.21529 (11)0.0346 (5)
C60.1005 (2)0.54177 (16)0.20961 (10)0.0291 (4)
C70.1541 (3)0.65879 (18)0.45879 (10)0.0349 (5)
H1−0.006 (3)0.4173 (19)0.2604 (12)0.044 (6)*
H2−0.004 (3)0.504 (2)0.3685 (11)0.043 (6)*
H30.230 (3)0.765 (2)0.2812 (11)0.045 (7)*
H40.210 (3)0.6900 (18)0.1779 (13)0.043 (6)*
H50.101 (3)0.767 (2)0.3958 (12)0.049 (7)*
H60.253 (3)0.523 (2)0.4302 (14)0.055 (8)*
H70.236 (3)0.529 (2)0.5062 (14)0.058 (8)*
H80.178 (3)0.700 (2)0.5536 (15)0.072 (9)*
H90.098 (3)0.787 (2)0.5079 (13)0.052 (8)*
N10.1200 (3)0.70124 (16)0.39801 (10)0.0412 (5)
N20.2066 (3)0.55499 (17)0.46566 (11)0.0439 (5)
N30.1313 (3)0.7218 (2)0.51347 (11)0.0532 (6)
O10.21174 (19)0.38280 (13)0.13149 (8)0.0451 (4)
O2−0.07907 (17)0.43211 (12)0.12279 (7)0.0376 (4)
O30.1335 (2)0.55807 (12)0.07941 (8)0.0494 (5)
S10.09167 (7)0.47441 (4)0.12971 (2)0.03204 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0413 (11)0.0274 (11)0.0300 (11)−0.0057 (9)−0.0014 (9)0.0013 (8)
C20.0401 (10)0.0355 (12)0.0258 (11)−0.0029 (9)0.0007 (9)0.0027 (9)
C30.0386 (10)0.0276 (10)0.0287 (11)0.0059 (9)−0.0034 (9)−0.0024 (8)
C40.0467 (12)0.0233 (10)0.0368 (12)−0.0024 (9)−0.0033 (10)−0.0017 (9)
C50.0451 (11)0.0260 (11)0.0327 (12)−0.0013 (10)0.0034 (10)0.0034 (9)
C60.0348 (10)0.0256 (10)0.0268 (10)0.0012 (8)−0.0011 (8)−0.0012 (8)
C70.0442 (11)0.0343 (11)0.0262 (11)0.0069 (10)−0.0028 (9)−0.0045 (9)
N10.0665 (13)0.0261 (10)0.0311 (10)0.0095 (9)−0.0096 (9)−0.0053 (8)
N20.0691 (13)0.0396 (11)0.0231 (10)0.0176 (10)−0.0035 (10)−0.0027 (8)
N30.0846 (16)0.0421 (13)0.0329 (12)0.0172 (12)−0.0051 (11)−0.0121 (10)
O10.0532 (9)0.0373 (9)0.0448 (10)0.0100 (7)0.0017 (7)−0.0085 (7)
O20.0465 (8)0.0309 (8)0.0355 (9)−0.0020 (7)−0.0086 (7)−0.0012 (6)
O30.0869 (12)0.0336 (9)0.0278 (8)−0.0105 (9)0.0088 (8)0.0034 (6)
S10.0474 (3)0.0247 (3)0.0240 (3)−0.0011 (2)0.0010 (2)−0.00080 (19)

Geometric parameters (Å, °)

C1—C21.376 (3)C7—N21.313 (3)
C1—C61.383 (3)C7—N31.327 (3)
C1—H10.91 (2)C7—N11.329 (3)
C2—C31.384 (3)N1—H50.80 (3)
C2—H20.97 (2)N2—H60.88 (3)
C3—C41.383 (3)N2—H70.89 (3)
C3—N11.421 (3)N3—H80.91 (3)
C4—C51.381 (3)N3—H90.83 (3)
C4—H30.90 (2)O1—S11.4546 (15)
C5—C61.385 (3)O2—S11.4619 (15)
C5—H40.95 (2)O3—S11.4457 (15)
C6—S11.770 (2)
C2—C1—C6120.1 (2)N2—C7—N3119.6 (2)
C2—C1—H1122.0 (15)N2—C7—N1121.1 (2)
C6—C1—H1117.9 (15)N3—C7—N1119.3 (2)
C1—C2—C3119.9 (2)C7—N1—C3127.30 (19)
C1—C2—H2121.6 (14)C7—N1—H5117.4 (18)
C3—C2—H2118.4 (14)C3—N1—H5115.2 (18)
C4—C3—C2120.0 (2)C7—N2—H6117.3 (17)
C4—C3—N1118.13 (19)C7—N2—H7120.1 (17)
C2—C3—N1121.70 (19)H6—N2—H7117 (2)
C5—C4—C3120.3 (2)C7—N3—H8119.0 (18)
C5—C4—H3117.6 (14)C7—N3—H9117.9 (19)
C3—C4—H3122.0 (14)H8—N3—H9121 (3)
C4—C5—C6119.3 (2)O3—S1—O1112.45 (10)
C4—C5—H4116.9 (14)O3—S1—O2112.95 (10)
C6—C5—H4123.7 (14)O1—S1—O2111.09 (9)
C1—C6—C5120.40 (19)O3—S1—C6106.78 (9)
C1—C6—S1119.37 (15)O1—S1—C6107.02 (9)
C5—C6—S1120.22 (15)O2—S1—C6106.07 (9)
C6—C1—C2—C3−0.9 (3)N2—C7—N1—C36.7 (4)
C1—C2—C3—C41.1 (3)N3—C7—N1—C3−171.9 (2)
C1—C2—C3—N1176.8 (2)C4—C3—N1—C7−141.9 (2)
C2—C3—C4—C5−0.1 (3)C2—C3—N1—C742.3 (3)
N1—C3—C4—C5−176.0 (2)C1—C6—S1—O3169.46 (17)
C3—C4—C5—C6−1.1 (3)C5—C6—S1—O3−10.8 (2)
C2—C1—C6—C5−0.2 (3)C1—C6—S1—O1−69.91 (18)
C2—C1—C6—S1179.46 (16)C5—C6—S1—O1109.79 (18)
C4—C5—C6—C11.2 (3)C1—C6—S1—O248.76 (18)
C4—C5—C6—S1−178.46 (16)C5—C6—S1—O2−131.54 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H5···O2i0.80 (3)2.00 (3)2.802 (2)171 (2)
N2—H6···O2ii0.88 (3)2.02 (3)2.851 (2)158 (2)
N2—H7···O3iii0.89 (3)2.07 (3)2.913 (3)160 (2)
N3—H8···O1iii0.91 (3)2.03 (3)2.924 (3)167 (3)
N3—H9···O3iv0.83 (3)2.34 (3)2.928 (3)129 (2)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x+1/2, y, −z+1/2; (iii) −x+1/2, −y+1, z+1/2; (iv) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2128).

References

  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hofbens, J. & Rath, H. J. (1981). Arch Pharm, 8, 731–733.
  • Miyake, M., Yamada, K. & Oyama, N. (2008). Langmuir, 24, 8527–8528. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography