PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o974.
Published online 2009 April 8. doi:  10.1107/S1600536809011970
PMCID: PMC2977671

2-(3-Oxo-1,3-dihydro­isobenzofuran-1-yl)­phthalazin-1(2H)-one

Abstract

The reaction of 2-carboxy­benzaldehyde and hydrazine hydrate unexpectedly yielded the title compound, C16H10N2O3, which comprises one phthalide ring, one phthalazine system and a chiral centre. The phthalide unit is almost perpendicular to the phthalazine system, forming a dihedral angle of 87.1 (3)°. The packing is governed by weak C—H(...)O hydrogen-bonding inter­actions, forming layers parallel to the ab plane.

Related literature

For general background to non-covalent inter­actions, see: Bernstein et al. (1995 [triangle]); Roesky & Andruh (2003 [triangle]). For related compounds, see: Nelson et al. (1982 [triangle]); Li et al. (2002 [triangle]); Özbey et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o974-scheme1.jpg

Experimental

Crystal data

  • C16H10N2O3
  • M r = 278.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o974-efi1.jpg
  • a = 7.2356 (2) Å
  • b = 8.0369 (2) Å
  • c = 11.1686 (4) Å
  • α = 80.047 (2)°
  • β = 86.093 (2)°
  • γ = 88.6550 (10)°
  • V = 638.17 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: none
  • 6746 measured reflections
  • 2295 independent reflections
  • 1626 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.110
  • S = 1.02
  • 2295 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011970/rz2283sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011970/rz2283Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

Hydrogen bonding as an important type of non-covalent interaction plays a great role in supramolecular chemistry and material sciences (Bernstein et al., 1995). Hydrogen bonding between solvent molecules and heterocycle compounds containing O or N donors has been confirmed to be a useful and powerful organizing force to form supramolecules (Roesky & Andruh, 2003). It has been reported (Nelson et al., 1982) that the reaction of 2,6-diacetylpyridine and 1,2-phenylenediamine can form benzimidazole groups via oxidative dehydrogenation. Recently, in the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-phenylenediamine in the presence of anhydrous ethanol solution a benzimidazole derivate have also been isolated (Li et al., 2002). In this paper, we chose 2-carboxybenzaldehyde and hydrazinehydrate as reagents and unexpectedly isolated the heterocyclic title compound.

The molecular structure of the title compound is shown in Fig. 1. The phthalazine system is almost planar with the N1—C9—C10—C11 and C14—C15—C16—N2 torsion angles of -175.9 (2) and 178.0 (2)°, respectively. The phthalide ring system is also almost planar, the O2—C8—C6—C5 torsion angle being -176.7 (2)°. The C8—N1 bond length (1.449 (2) Å) indicates single bond character, and the corresponding bond angles demonstrate the sp3 character of the C8 atom (chiral centre). The C16—N2 bond length (1.287 (2) Å) in the phthalazine ring has double bond character and is shorter than that found in the azomethine group of a related compound (Özbey et al., 1998). The phthalide ring system is almost perpendicular to the phthalazine ring system, the dihedral angle they form being 87.1 (3)°. In the crystal structure, the molecules are linked via weak C—H···O hydrogen bonding interactions forming layers parallel to the ab plane (Table 1, Fig. 2).

Experimental

2-Carboxybenzaldehyde (0.30 g, 2 mmol) and hydrazinehydrate (0.050 g, 1 mmol) were added to methanol (20 ml), and the mixture was refluxed for 3 h at 80°C. The resulting yellow precipitate was filtered and recrystallized from a MeOH/DMSO (5:1 v/v) solution. Colourless lamellar crystals were obtained on slow evaporation of the solvents at room temperature.

Refinement

All H atoms were placed in calculated positions and were refined using a riding model, with (C—H = 0.93-0.96 Å, O—H = 0.82 Å), and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms.

Figures

Fig. 1.
The molecular structure showing the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
View of a supramolecular network of the title structure. Intemolecular hydrogen bonds are shown as dashed lines.

Crystal data

C16H10N2O3Z = 2
Mr = 278.26F(000) = 288
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2356 (2) ÅCell parameters from 2295 reflections
b = 8.0369 (2) Åθ = 2.6–25.2°
c = 11.1686 (4) ŵ = 0.10 mm1
α = 80.047 (2)°T = 296 K
β = 86.093 (2)°Block, colourless
γ = 88.655 (1)°0.20 × 0.18 × 0.15 mm
V = 638.17 (3) Å3

Data collection

Bruker APEXII area-detector diffractometer1626 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
graphiteθmax = 25.2°, θmin = 2.6°
ω scansh = −8→8
6746 measured reflectionsk = −9→9
2295 independent reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0516P)2 + 0.0851P] where P = (Fo2 + 2Fc2)/3
2295 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2297 (2)1.0612 (2)0.05051 (17)0.0452 (4)
C20.2968 (2)1.0522 (3)−0.06731 (17)0.0527 (5)
H20.33321.1489−0.12150.063*
C30.3079 (2)0.8959 (3)−0.10149 (17)0.0546 (5)
H30.35140.8863−0.18030.065*
C40.2552 (3)0.7527 (3)−0.02004 (18)0.0558 (5)
H40.26500.6480−0.04480.067*
C50.1881 (2)0.7618 (2)0.09758 (17)0.0504 (5)
H50.15270.66520.15210.061*
C60.1756 (2)0.9188 (2)0.13127 (15)0.0433 (4)
C70.2067 (3)1.2059 (3)0.1138 (2)0.0609 (5)
C80.1105 (2)0.9693 (2)0.24995 (17)0.0522 (5)
H8−0.02240.94730.26550.063*
C90.1102 (2)0.7947 (2)0.45282 (17)0.0502 (5)
C100.2253 (2)0.7052 (2)0.54673 (16)0.0457 (4)
C110.1443 (3)0.6004 (2)0.64863 (18)0.0569 (5)
H110.01670.58610.65740.068*
C120.2554 (3)0.5188 (3)0.73568 (19)0.0630 (5)
H120.20240.44830.80360.076*
C130.4459 (3)0.5403 (3)0.72353 (19)0.0635 (6)
H130.51910.48500.78380.076*
C140.5268 (3)0.6416 (3)0.62413 (19)0.0588 (5)
H140.65460.65520.61670.071*
C150.4170 (2)0.7251 (2)0.53311 (16)0.0463 (4)
C160.4925 (2)0.8287 (3)0.42442 (17)0.0550 (5)
H160.62020.84290.41620.066*
N10.20803 (18)0.8852 (2)0.35304 (13)0.0496 (4)
N20.39749 (19)0.9039 (2)0.33708 (14)0.0548 (4)
O10.2366 (2)1.35289 (19)0.07887 (16)0.0893 (5)
O20.14034 (19)1.14869 (17)0.23133 (13)0.0666 (4)
O3−0.05902 (16)0.7908 (2)0.45814 (13)0.0764 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0396 (9)0.0427 (11)0.0528 (11)0.0040 (7)−0.0141 (8)−0.0033 (8)
C20.0451 (10)0.0558 (13)0.0519 (12)−0.0009 (8)−0.0109 (8)0.0087 (9)
C30.0503 (11)0.0639 (14)0.0491 (11)0.0075 (9)−0.0068 (9)−0.0081 (10)
C40.0593 (12)0.0505 (12)0.0596 (13)0.0046 (9)−0.0110 (9)−0.0128 (10)
C50.0481 (10)0.0456 (12)0.0549 (12)−0.0036 (8)−0.0090 (8)0.0020 (9)
C60.0337 (8)0.0470 (11)0.0483 (11)0.0026 (7)−0.0097 (7)−0.0034 (8)
C70.0630 (13)0.0509 (14)0.0694 (15)0.0109 (10)−0.0240 (11)−0.0056 (11)
C80.0421 (10)0.0608 (13)0.0534 (11)0.0081 (8)−0.0099 (8)−0.0074 (9)
C90.0356 (9)0.0667 (13)0.0490 (11)0.0013 (8)−0.0035 (8)−0.0116 (9)
C100.0389 (9)0.0547 (11)0.0452 (10)0.0042 (8)−0.0039 (8)−0.0131 (9)
C110.0470 (10)0.0650 (13)0.0577 (12)−0.0014 (9)−0.0024 (9)−0.0079 (10)
C120.0674 (13)0.0620 (14)0.0570 (13)0.0014 (10)−0.0053 (10)−0.0029 (10)
C130.0685 (13)0.0649 (14)0.0577 (13)0.0123 (10)−0.0199 (10)−0.0078 (11)
C140.0436 (10)0.0724 (14)0.0624 (13)0.0080 (9)−0.0150 (9)−0.0134 (11)
C150.0385 (9)0.0541 (11)0.0490 (11)0.0045 (8)−0.0075 (8)−0.0157 (9)
C160.0314 (9)0.0761 (14)0.0574 (12)−0.0005 (8)−0.0052 (8)−0.0105 (10)
N10.0320 (7)0.0707 (11)0.0447 (9)0.0051 (7)−0.0048 (6)−0.0061 (7)
N20.0331 (8)0.0770 (12)0.0527 (10)0.0007 (7)−0.0038 (7)−0.0068 (8)
O10.1198 (14)0.0428 (10)0.1065 (13)0.0052 (8)−0.0350 (10)−0.0064 (9)
O20.0757 (9)0.0616 (10)0.0661 (10)0.0228 (7)−0.0169 (7)−0.0194 (7)
O30.0307 (7)0.1177 (13)0.0730 (10)−0.0009 (7)−0.0059 (6)0.0066 (9)

Geometric parameters (Å, °)

C1—C61.376 (2)C9—O31.223 (2)
C1—C21.384 (3)C9—N11.382 (2)
C1—C71.463 (3)C9—C101.464 (2)
C2—C31.374 (3)C10—C151.395 (2)
C2—H20.9300C10—C111.396 (3)
C3—C41.381 (3)C11—C121.372 (3)
C3—H30.9300C11—H110.9300
C4—C51.382 (3)C12—C131.388 (3)
C4—H40.9300C12—H120.9300
C5—C61.377 (3)C13—C141.364 (3)
C5—H50.9300C13—H130.9300
C6—C81.495 (2)C14—C151.401 (2)
C7—O11.198 (2)C14—H140.9300
C7—O21.371 (3)C15—C161.431 (3)
C8—O21.440 (2)C16—N21.287 (2)
C8—N11.449 (2)C16—H160.9300
C8—H80.9800N1—N21.3786 (18)
C6—C1—C2121.43 (18)O3—C9—C10124.45 (17)
C6—C1—C7108.00 (17)N1—C9—C10114.62 (15)
C2—C1—C7130.55 (18)C15—C10—C11120.32 (16)
C3—C2—C1117.82 (18)C15—C10—C9119.31 (16)
C3—C2—H2121.1C11—C10—C9120.37 (16)
C1—C2—H2121.1C12—C11—C10119.18 (18)
C2—C3—C4120.73 (19)C12—C11—H11120.4
C2—C3—H3119.6C10—C11—H11120.4
C4—C3—H3119.6C11—C12—C13120.7 (2)
C3—C4—C5121.39 (19)C11—C12—H12119.6
C3—C4—H4119.3C13—C12—H12119.6
C5—C4—H4119.3C14—C13—C12120.66 (19)
C6—C5—C4117.77 (17)C14—C13—H13119.7
C6—C5—H5121.1C12—C13—H13119.7
C4—C5—H5121.1C13—C14—C15119.88 (18)
C1—C6—C5120.86 (17)C13—C14—H14120.1
C1—C6—C8108.75 (16)C15—C14—H14120.1
C5—C6—C8130.38 (17)C10—C15—C14119.22 (18)
O1—C7—O2120.9 (2)C10—C15—C16117.71 (16)
O1—C7—C1130.7 (2)C14—C15—C16123.06 (17)
O2—C7—C1108.36 (18)N2—C16—C15125.13 (16)
O2—C8—N1110.25 (14)N2—C16—H16117.4
O2—C8—C6104.41 (14)C15—C16—H16117.4
N1—C8—C6114.15 (14)N2—N1—C9126.76 (14)
O2—C8—H8109.3N2—N1—C8113.34 (14)
N1—C8—H8109.3C9—N1—C8119.88 (14)
C6—C8—H8109.3C16—N2—N1116.35 (15)
O3—C9—N1120.92 (17)C7—O2—C8110.40 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.932.413.2935 (19)158
C4—H4···O1ii0.932.543.215 (2)130

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2283).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, J., Zhang, F. X. & Shi, Q. Z. (2002). Chin. J. Inorg. Chem.6, 643–645.
  • Nelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407–415.
  • Özbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct.442, 23–30.
  • Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev.236, 91–119.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography