PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o962.
Published online 2009 April 8. doi:  10.1107/S1600536809010757
PMCID: PMC2977662

[3,5-Bis(benz­yloxy)phen­yl]methanol

Abstract

In the title compound, C21H20O3, the two terminal phenyl rings are each approximately perpendicular to the central benzene ring, making dihedral angles of 84.40 (16) and 75.12 (15)°. The H atom of the hydr­oxy group is disordered over two positions with equal occupancies. The mol­ecules are linked by O—H(...)O hydrogen bonds, forming a chain along the a axis.

Related literature

For related compounds, see: Rheiner & Seebach (1999 [triangle]); Pan et al. (2005 [triangle]); Xiao et al. (2007 [triangle]). For the synthesis, see: Hawker & Fréchet (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o962-scheme1.jpg

Experimental

Crystal data

  • C21H20O3
  • M r = 320.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o962-efi1.jpg
  • a = 4.8555 (6) Å
  • b = 12.2442 (18) Å
  • c = 15.017 (2) Å
  • α = 74.049 (1)°
  • β = 83.293 (1)°
  • γ = 89.733 (2)°
  • V = 852.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 K
  • 0.46 × 0.16 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.963, T max = 0.988
  • 4355 measured reflections
  • 2909 independent reflections
  • 1563 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.168
  • S = 0.99
  • 2909 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010757/is2400sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010757/is2400Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Shandong Province (2007BS02016) and the Key Subject Research Foundation of Shandong Province (XTD 0705).

supplementary crystallographic information

Comment

Dendrimers are three-dimensional hyperbranched macromolecules that provide well defined nanoscopic objects at the single molecular level. Recent studies on dendritic macromolecules have extended the scope of research from synthesis to applications for catalysts, photoactive and electronic materials, medicinal and biomedical materials, and other functional materials. As a part of our structural investigations on dendritic macromolecules, the single-crystal X-ray diffraction study on the title compound was carried out.

In the title compound, the bond lengths and angles are within the normal ranges. Each unit cell of the title compound contains two molecules like other analogues reported before (Pan et al., 2005; Rheiner & Seebach, 1999; Xiao et al., 2007). It is worth noting that the dihedral angles between the central benzene ring and the two peripheral phenyl rings are 84.40 (16) and 75.12 (15)°. Probably because of the effects of substitution of the central benzene ring, the dihedral angels of the title compound are different from ones reported (Xiao et al., 2007). The O—CH2 bonds lie in the plane of the central phenyl ring and adopt a syn, anti conformation (Pan et al., 2005). The crystal structure is stabilized by intermolecular hydrogen bonds.

Experimental

Benzylbromide (10.0 g, 58 mmol), 3,5-dihydroxybenzyl alcohol (4.10 g, 129 mmol), 18-crown-6-ether (1.54 g, 5.8 mmol) and potassium carbonate (16 g, 578.6 mmol) were suspended in 500 ml of 2-butanone under nitrogen atmosphere. The mixture was heated under reflux for 48 h. Upon completion of the reaction, the solvent was evaporated and the water and dichloromethanewere added to the residue. Conventional workup and purification by silica-gel column chromatography (eluent: dichloromethane) yielded 5.6 g of the title compound (60%) as a white needle (Hawker & Fréchet, 1990). Single crystals suitable for X-ray study were grown by diffusion method [dichloromethane/n-hexane (1:4 v/v)] at room temperature.

Refinement

H atoms bound to carbon were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq (C) for aromatic atoms, and C—H = 0.97 Å and Uiso(H) = 1.2Ueq (C) for methylene atoms. The H atom of the OH group was found to be disordered over two positions with approximately equal occupancies from a difference Fourier map. The positions were then constrained, with Uiso(H) = 1.2Ueq(O), and with equal occupancies.

Figures

Fig. 1.
The molecular structure, with atom labels and 25% probability displacement ellipsoids for non-H atoms.

Crystal data

C21H20O3Z = 2
Mr = 320.37F(000) = 340
Triclinic, P1Dx = 1.249 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8555 (6) ÅCell parameters from 1252 reflections
b = 12.2442 (18) Åθ = 2.5–23.9°
c = 15.017 (2) ŵ = 0.08 mm1
α = 74.049 (1)°T = 298 K
β = 83.293 (1)°Needle, colorless
γ = 89.733 (2)°0.46 × 0.16 × 0.15 mm
V = 852.2 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer2909 independent reflections
Radiation source: fine-focus sealed tube1563 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −5→5
Tmin = 0.963, Tmax = 0.988k = −14→13
4355 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0808P)2] where P = (Fo2 + 2Fc2)/3
2909 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.7476 (4)0.54725 (14)0.18038 (12)0.0568 (6)
O20.7536 (4)0.14526 (14)0.29783 (13)0.0635 (6)
O31.2666 (5)0.48874 (17)0.45678 (15)0.0789 (7)
H31.37380.49820.49700.095*0.50
H3'1.10260.49580.48280.095*0.50
C10.8253 (5)0.4491 (2)0.24052 (17)0.0426 (6)
C20.7487 (5)0.34076 (19)0.23990 (17)0.0453 (7)
H2A0.63410.32990.19740.054*
C30.8453 (6)0.2488 (2)0.30348 (18)0.0464 (7)
C41.0120 (6)0.2635 (2)0.36729 (18)0.0480 (7)
H4A1.07470.20070.40980.058*
C51.0871 (5)0.3729 (2)0.36817 (17)0.0425 (6)
C60.9927 (5)0.4648 (2)0.30581 (17)0.0438 (7)
H6A1.04020.53790.30690.053*
C70.5903 (6)0.5371 (2)0.10822 (18)0.0533 (7)
H7A0.40950.50240.13510.064*
H7B0.68540.48970.07290.064*
C80.5585 (6)0.6536 (2)0.04585 (18)0.0496 (7)
C90.7312 (7)0.6937 (3)−0.0356 (2)0.0754 (10)
H9A0.86760.6473−0.05280.090*
C100.7059 (10)0.8012 (3)−0.0920 (3)0.0962 (13)
H10A0.82630.8274−0.14670.115*
C110.5067 (10)0.8696 (3)−0.0687 (3)0.0908 (12)
H11A0.48830.9422−0.10760.109*
C120.3331 (9)0.8312 (3)0.0124 (3)0.1023 (13)
H12A0.19820.87810.02970.123*
C130.3587 (8)0.7224 (3)0.0687 (2)0.0794 (10)
H13A0.23720.69590.12320.095*
C140.8719 (7)0.0468 (2)0.3518 (2)0.0680 (9)
H14A0.83310.04220.41760.082*
H14B1.07160.05010.33540.082*
C150.7497 (7)−0.0552 (2)0.3328 (2)0.0557 (8)
C160.8521 (8)−0.0914 (3)0.2569 (2)0.0772 (10)
H16A0.9985−0.05100.21580.093*
C170.7416 (8)−0.1859 (3)0.2410 (3)0.0869 (11)
H17A0.8147−0.20900.18930.104*
C180.5285 (9)−0.2461 (3)0.2992 (3)0.0790 (11)
H18A0.4561−0.31060.28800.095*
C190.4214 (8)−0.2119 (3)0.3736 (3)0.0840 (11)
H19A0.2732−0.25260.41360.101*
C200.5308 (7)−0.1165 (3)0.3910 (2)0.0724 (9)
H20A0.4552−0.09370.44270.087*
C211.2750 (6)0.3847 (2)0.43799 (19)0.0533 (7)
H21C1.22430.32580.49580.064*
H21A1.46410.37210.41480.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0814 (15)0.0381 (10)0.0525 (11)−0.0110 (9)−0.0322 (10)−0.0052 (9)
O20.0863 (16)0.0319 (10)0.0791 (14)0.0001 (9)−0.0387 (12)−0.0149 (9)
O30.0913 (17)0.0735 (14)0.0969 (17)0.0106 (12)−0.0500 (14)−0.0495 (13)
C10.0504 (17)0.0370 (14)0.0399 (14)−0.0060 (12)−0.0073 (12)−0.0090 (12)
C20.0548 (18)0.0405 (15)0.0447 (15)−0.0049 (12)−0.0162 (13)−0.0141 (12)
C30.0544 (18)0.0364 (14)0.0529 (16)−0.0019 (12)−0.0106 (14)−0.0179 (13)
C40.0553 (18)0.0407 (15)0.0521 (16)0.0023 (12)−0.0168 (14)−0.0156 (13)
C50.0382 (15)0.0501 (16)0.0421 (14)−0.0022 (12)−0.0080 (12)−0.0166 (13)
C60.0480 (17)0.0412 (15)0.0451 (14)−0.0094 (12)−0.0073 (13)−0.0162 (12)
C70.067 (2)0.0495 (17)0.0465 (15)−0.0089 (14)−0.0208 (14)−0.0128 (13)
C80.0575 (19)0.0477 (16)0.0469 (16)−0.0056 (14)−0.0173 (14)−0.0139 (13)
C90.090 (3)0.064 (2)0.064 (2)−0.0044 (18)0.0077 (19)−0.0125 (18)
C100.131 (4)0.074 (3)0.065 (2)−0.018 (2)0.002 (2)0.005 (2)
C110.114 (3)0.060 (2)0.087 (3)−0.006 (2)−0.039 (3)0.010 (2)
C120.109 (3)0.073 (3)0.112 (3)0.023 (2)−0.015 (3)−0.002 (2)
C130.082 (3)0.073 (2)0.070 (2)0.014 (2)−0.0027 (18)0.0004 (18)
C140.097 (3)0.0410 (16)0.073 (2)0.0056 (16)−0.0391 (18)−0.0153 (15)
C150.072 (2)0.0330 (15)0.0616 (19)0.0019 (14)−0.0210 (16)−0.0064 (14)
C160.088 (3)0.059 (2)0.086 (2)−0.0220 (18)0.009 (2)−0.0278 (18)
C170.093 (3)0.072 (2)0.109 (3)−0.006 (2)−0.003 (2)−0.050 (2)
C180.092 (3)0.0474 (19)0.102 (3)−0.0107 (19)−0.037 (2)−0.019 (2)
C190.084 (3)0.069 (2)0.088 (3)−0.028 (2)−0.020 (2)0.001 (2)
C200.081 (3)0.070 (2)0.065 (2)0.0024 (19)−0.0113 (19)−0.0148 (18)
C210.0524 (18)0.0574 (17)0.0596 (18)0.0020 (14)−0.0189 (14)−0.0267 (15)

Geometric parameters (Å, °)

O1—C11.371 (3)C10—C111.354 (5)
O1—C71.429 (3)C10—H10A0.9300
O2—C31.374 (3)C11—C121.365 (5)
O2—C141.416 (3)C11—H11A0.9300
O3—C211.378 (3)C12—C131.381 (5)
O3—H30.8727C12—H12A0.9300
O3—H3'0.8599C13—H13A0.9300
C1—C21.382 (3)C14—C151.496 (4)
C1—C61.396 (3)C14—H14A0.9700
C2—C31.381 (3)C14—H14B0.9700
C2—H2A0.9300C15—C161.372 (4)
C3—C41.372 (3)C15—C201.374 (4)
C4—C51.394 (3)C16—C171.369 (4)
C4—H4A0.9300C16—H16A0.9300
C5—C61.367 (3)C17—C181.349 (5)
C5—C211.503 (3)C17—H17A0.9300
C6—H6A0.9300C18—C191.347 (5)
C7—C81.494 (4)C18—H18A0.9300
C7—H7A0.9700C19—C201.387 (4)
C7—H7B0.9700C19—H19A0.9300
C8—C131.358 (4)C20—H20A0.9300
C8—C91.369 (4)C21—H21C0.9700
C9—C101.370 (5)C21—H21A0.9700
C9—H9A0.9300
C1—O1—C7117.82 (18)C10—C11—H11A120.3
C3—O2—C14117.6 (2)C12—C11—H11A120.3
C21—O3—H3116.4C11—C12—C13119.7 (4)
C21—O3—H3'107.9C11—C12—H12A120.1
H3—O3—H3'103.4C13—C12—H12A120.1
O1—C1—C2124.7 (2)C8—C13—C12121.0 (3)
O1—C1—C6115.0 (2)C8—C13—H13A119.5
C2—C1—C6120.3 (2)C12—C13—H13A119.5
C3—C2—C1118.9 (2)O2—C14—C15108.6 (2)
C3—C2—H2A120.6O2—C14—H14A110.0
C1—C2—H2A120.6C15—C14—H14A110.0
C4—C3—O2124.6 (2)O2—C14—H14B110.0
C4—C3—C2121.2 (2)C15—C14—H14B110.0
O2—C3—C2114.1 (2)H14A—C14—H14B108.4
C3—C4—C5119.7 (2)C16—C15—C20117.6 (3)
C3—C4—H4A120.1C16—C15—C14121.4 (3)
C5—C4—H4A120.1C20—C15—C14121.0 (3)
C6—C5—C4119.8 (2)C17—C16—C15120.9 (3)
C6—C5—C21122.4 (2)C17—C16—H16A119.5
C4—C5—C21117.8 (2)C15—C16—H16A119.5
C5—C6—C1120.1 (2)C18—C17—C16121.0 (4)
C5—C6—H6A119.9C18—C17—H17A119.5
C1—C6—H6A119.9C16—C17—H17A119.5
O1—C7—C8108.02 (19)C19—C18—C17119.4 (3)
O1—C7—H7A110.1C19—C18—H18A120.3
C8—C7—H7A110.1C17—C18—H18A120.3
O1—C7—H7B110.1C18—C19—C20120.4 (3)
C8—C7—H7B110.1C18—C19—H19A119.8
H7A—C7—H7B108.4C20—C19—H19A119.8
C13—C8—C9118.4 (3)C15—C20—C19120.6 (3)
C13—C8—C7120.9 (3)C15—C20—H20A119.7
C9—C8—C7120.8 (3)C19—C20—H20A119.7
C8—C9—C10120.9 (3)O3—C21—C5114.2 (2)
C8—C9—H9A119.6O3—C21—H21C108.7
C10—C9—H9A119.6C5—C21—H21C108.7
C11—C10—C9120.5 (4)O3—C21—H21A108.7
C11—C10—H10A119.8C5—C21—H21A108.7
C9—C10—H10A119.8H21C—C21—H21A107.6
C10—C11—C12119.5 (4)
C7—O1—C1—C2−4.0 (4)C7—C8—C9—C10−178.8 (3)
C7—O1—C1—C6176.2 (2)C8—C9—C10—C11−0.7 (6)
O1—C1—C2—C3178.9 (2)C9—C10—C11—C120.9 (6)
C6—C1—C2—C3−1.3 (4)C10—C11—C12—C13−1.3 (6)
C14—O2—C3—C4−10.0 (4)C9—C8—C13—C12−1.3 (5)
C14—O2—C3—C2171.7 (2)C7—C8—C13—C12178.3 (3)
C1—C2—C3—C40.7 (4)C11—C12—C13—C81.6 (6)
C1—C2—C3—O2179.1 (2)C3—O2—C14—C15−178.2 (2)
O2—C3—C4—C5−178.4 (2)O2—C14—C15—C1683.4 (4)
C2—C3—C4—C5−0.3 (4)O2—C14—C15—C20−96.8 (3)
C3—C4—C5—C60.4 (4)C20—C15—C16—C17−0.9 (5)
C3—C4—C5—C21−178.7 (2)C14—C15—C16—C17178.9 (3)
C4—C5—C6—C1−1.0 (4)C15—C16—C17—C180.2 (6)
C21—C5—C6—C1178.1 (2)C16—C17—C18—C190.6 (6)
O1—C1—C6—C5−178.8 (2)C17—C18—C19—C20−0.7 (5)
C2—C1—C6—C51.5 (4)C16—C15—C20—C190.8 (5)
C1—O1—C7—C8−173.7 (2)C14—C15—C20—C19−179.0 (3)
O1—C7—C8—C13−82.1 (3)C18—C19—C20—C150.0 (5)
O1—C7—C8—C997.5 (3)C6—C5—C21—O321.5 (4)
C13—C8—C9—C100.9 (5)C4—C5—C21—O3−159.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O3i0.871.982.791 (4)155
O3—H3'···O3ii0.861.952.805 (5)179

Symmetry codes: (i) −x+3, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2400).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hawker, C. J. & Fréchet, J. M. (1990). J. Am. Chem. Soc.112, 7638–7647.
  • Pan, Z.-G., Cheung, E.-Y., Harris, K. D. M., Constable, E. C. & Housecroft, C. E. (2005). Cryst. Growth Des.5, 2084–2090.
  • Rheiner, P. B. & Seebach, D. (1999). Chem. Eur. J.5, 3221–3236.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Chen, X. & Zhu, H.-L. (2007). Can. J. Chem.85, 951–957.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography